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Figure 1: The CARS, DISCO, and FLASHLIGHTS scenes rendered using progressive photon beams for both homogeneous and heterogeneous
media. We generate a sequence of independent render passes (middle) where we progressively reduce the photon beam radii. This slightly
increases variance in each pass, but we prove that the average of all passes (bottom) converges to the ground truth.

Abstract
We present progressive photon beams, a new algorithm for render-
ing complex lighting in participating media. Our technique is ef-
ficient, robust to complex light paths, and handles heterogeneous
media and anisotropic scattering while provably converging to the
correct solution using a bounded memory footprint. We achieve
this by extending the recent photon beams variant of volumetric
photon mapping. We show how to formulate a progressive radiance
estimate using photon beams, providing the convergence guaran-
tees and bounded memory usage of progressive photon mapping.
Progressive photon beams can robustly handle situations that are
difficult for most other algorithms, such as scenes containing par-
ticipating media and specular interfaces, with realistic light sources
completely enclosed by refractive and reflective materials. Our
technique handles heterogeneous media and also trivially supports
stochastic effects such as depth-of-field and glossy materials. Fi-
nally, we show how progressive photon beams can be implemented
efficiently on the GPU as a splatting operation, making it applicable
to interactive and real-time applications. These features make our
technique scalable, providing the same physically-based algorithm
for interactive feedback and reference-quality, unbiased solutions.
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1 Introduction
The scattering of light creates stunning visual complexity, in par-
ticular with interactions in participating media such as clouds, fog,
and even air. Rendering this complex light transport requires solv-
ing the radiative transport equation [Chandrasekar 1960] combined
with the rendering equation [Kajiya 1986] as a boundary condition.

The gold standard for rendering is arguably computing unbiased,
noise-free images. Unfortunately, the only options to achieve this
are variants of brute force path tracing [Kajiya 1986; Lafortune and
Willems 1993; Veach and Guibas 1994; Lafortune and Willems
1996] and Metropolis light transport [Veach and Guibas 1997;
Pauly et al. 2000], which are slow to converge to noise-free images
despite recent advances [Raab et al. 2008; Yue et al. 2010]. This be-
comes particularly problematic when the scene contains so-called
SDS (specular-diffuse-specular) or SMS (specular-media-specular)
subpaths, which are actually quite common in physical scenes (e.g.
illumination due to a light source inside a glass fixture). Unfor-
tunately, path tracing methods cannot robustly handle these situ-
ations, especially in the presence of small light sources. Meth-
ods based on volumetric photon mapping [Jensen and Christensen
1998; Jarosz et al. 2008] do not suffer from these problems. They
can robustly handle S(D|M)S subpaths, and generally produce less
noise. However, these methods suffer from bias, which can be elim-
inated in theory by using infinitely many photons, but in practice
this is not feasible since it requires unlimited memory.

We combine the benefits of these two classes of algorithms. Our ap-
proach converges to the gold standard much faster than path tracing,
is robust to S(D|M)S subpaths, and has a bounded memory foot-
print. In addition, we show how the algorithm can be accelerated on
the GPU. This allows for interactive lighting design in the presence
of complex light sources and participating media. We also obtain
reference-quality results at real-time rates for simple scenes con-
taining complex volumetric light interactions. Our algorithm grace-
fully handles a wide spectrum of fidelity settings, ranging from real-
time frame rates to reference quality solutions. This makes it pos-
sible to produce interactive previews with the same technique used
for a high-quality final render — providing visual consistency, an
essential property for interactive lighting design tools.

Our approach draws upon two recent advances in rendering: pho-
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ton beams and progressive photon mapping. The photon beams
method [Jarosz et al. 2011] is a generalization of volumetric photon
mapping which accelerates participating media rendering by per-
forming density estimation on the full paths of photons (beams), in-
stead of just photon scattering locations. Photon beams are blurred
with a finite width, leading to bias. Reducing this width reduces
bias, but unfortunately increases noise. Progressive photon map-
ping (PPM) [Hachisuka et al. 2008; Knaus and Zwicker 2011] pro-
vides a way to eliminate bias and noise simultaneously in photon
mapping.

Unfortunately, naı̈vely applying PPM to photon beams is not possi-
ble due to the fundamental differences between density estimation
using points and beams, so convergence guarantees need to be re-
derived for this more complicated case. Moreover, previous PPM
derivations only apply to fixed-radius or k-nearest neighbor den-
sity estimation, which are commonly used for surface illumination.
Photon beams, on the other hand, are formulated using variable ker-
nel density estimation [Silverman 1986] where each beam has an
associated kernel.

We show how to overcome the challenges of combining PPM with
photon beams. The resulting progressive photon beams (PPB) al-
gorithm is efficient, robust to S(D|M)S subpaths, and converges
to ground truth with bounded memory usage. Additionally, we
demonstrate how photons beams can be applied to efficiently han-
dle heterogeneous media.

At a high-level our approach proceeds similarly as previous PPM
techniques. The main idea, as illustrated in Figure 1, is to average
over a sequence of rendering passes, where each pass uses an inde-
pendent photon (beam) map. In our approach, we render each pass
using a collection of stochastically generated photon beams. As a
key step, we reduce the radii of the photon beams using a global
scaling factor after each pass. Therefore each subsequent image
has less bias but slightly more noise. As we add more passes, how-
ever, the average of these images converges to the correct solution.
A main contribution of this paper is to derive an appropriate se-
quence of radius reduction factors for photon beams, and to prove
convergence of the progressive approach. In summary:

• We perform a theoretical error analysis of density estimation
using photon beams to derive the necessary conditions for con-
vergence, and we provide a numerical validation of our theory.
Our analysis generalizes previous approaches by allowing pho-
ton beams as the data representation, and by considering vary-
ing kernels centered at photons and not at query locations.
• We use our analysis to derive a progressive form of the photon

beams algorithm that converges to an unbiased solution using
finite memory.
• We introduce a progressive and unbiased generalization of deep

shadow maps to handle heterogeneous media efficiently.
• We reformulate the photon beam radiance estimate as a splat-

ting operation to exploit GPU rasterization: increasing perfor-
mance for common light paths, and allowing us to render simple
scenes with multiple specular reflections in real-time.

2 Related Work
Photon Mapping. Volumetric photon mapping was first intro-
duced by Jensen and Christensen [1998] and subsequently im-
proved by Jarosz et al. [2008] to avoid costly and redundant density
queries due to ray marching. They formulated a “beam radiance es-
timate” that considered all photons along the length of a ray in one
query. Jarosz et al. [2011] showed how to apply the beam concept
not just to the query operation but also to the photon data represen-
tation. They utilized the entire photon path instead of just photon
points to obtain a significant quality and performance improvement,

and also suggested (but did not demonstrate) a biased way to handle
heterogeneous media by storing an approximation of transmittance
along each path, in the spirit of deep shadow maps [Lokovic and
Veach 2000]. The photon beams method is conceptually similar to
ray maps for surface illumination [Lastra et al. 2002; Havran et al.
2005; Herzog et al. 2007] as well as the recent line-space gather-
ing technique [Sun et al. 2010]. All of these methods are biased,
which allows for more efficient simulation; however, when the ma-
jority of the illumination is due to caustics (which is often the case
with realistic lighting fixtures or when there are specular surfaces)
the photons are visualized directly and many are required to obtain
high-quality results. Though these methods converge to an exact
solution as the number of photons increases, obtaining a converged
solution requires storing an infinite collection of photons, which is
not feasible.

Progressive Photon Mapping. Progressive photon mapping
[Hachisuka et al. 2008] alleviates this memory constraint. Instead
of storing all photons needed to obtain a converged result, it up-
dates progressive estimates of radiance at measurement points in
the scene [Hachisuka et al. 2008; Hachisuka and Jensen 2009] or
on the image plane [Knaus and Zwicker 2011]. Photons are traced
and discarded progressively, and the radiance estimates are updated
after each photon tracing pass in such a way that the approximation
converges to the correct solution in the limit. Previous progressive
techniques have primarily focused on surface illumination, with the
exception of Knaus and Zwicker [2011], who also demonstrated re-
sults for traditional volumetric photon mapping [Jensen and Chris-
tensen 1998]. Unfortunately, volumetric photon mapping with pho-
ton points produces inferior results to photon beams [Jarosz et al.
2011], especially in the presence of complex specular interactions
that benefit most from progressive estimation. We specifically
tackle this problem and extend progressive photon mapping theory
to photon beams.

Real-time Techniques. To improve the efficiency of our ap-
proach, we progressively splat photon beams whenever possible
using GPU rasterization. Though this significantly improves per-
formance for the general case, restricted settings like homogeneous
single-scattering with shadows can be handled more efficiently by
specialized techniques [Engelhardt and Dachsbacher 2010; Chen
et al. 2011]. There are also a number of techniques that have con-
sidered using line-like primitives for real-time rendering of vol-
ume caustics, but these techniques generally have different goals
than ours. The method of Krüger et al. [2006] uses splatting,
but does not produce physically-based results. Hu et al. [2010]
proposed a physically-based approach, but it requires ray march-
ing even for homogeneous media. Liktor and Dachsbacher [2011]
improved upon this technique by using adaptive and approximate
beam-tracing and splatting. These methods could handle only one
or two specular surface interactions. For simple scenes with simi-
lar lighting restrictions we are also able to obtain real-time perfor-
mance, but additionally provide a progressive and convergent so-
lution. The recent technique by Engelhardt et al. [2010] targets
approximate multiple scattering in heterogeneous media and can
obtain real-time performance. Unlike our approach, all of these
methods are either approximate, do not handle S(D|M)S subpaths,
or will not converge to ground truth in bounded memory.

3 Preliminaries
We briefly describe the technical details of light transport in partic-
ipating media and summarize relevant equations related to photon
beams and progressive photon mapping which we build upon.
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Figure 2: Radiance estimation with one photon beam as viewed
from the side (left) and in the plane perpendicular to the query ray
where the direction ~u = ~v × ~w extends out of the page (right).

3.1 Light Transport in Participating Media

In the presence of participating media, the light incident at any point
in the scene x (e.g. the camera) from a direction ~w (e.g. the direc-
tion through a pixel) can be expressed using the radiative transport
equation [Chandrasekar 1960] as the sum of two terms:

L(x, ~w) = Tr(s)Ls(xs, ~w) + Lm(x, ~w). (1)

The first term is outgoing reflected radiance from a surface, Ls, at
the endpoint of the ray, xs = x − s~w, after attenuation due to the
transmittance Tr . In homogeneous media, Tr(s) = e−sσt , where
σt is the extinction coefficient. In heterogeneous media, transmit-
tance accounts for the extinction coefficient along the entire seg-
ment between the two points, but we use this simple one-parameter
notation here for brevity. The second term is medium radiance,

Lm(x, ~w) =

∫ s

0

σs(xw)Tr(w)

∫
Ω4π

f(~w ·~v)L(xw, ~v) d~v dw, (2)

where f is the normalized phase function, σs is the scattering
coefficient, and w is a scalar distance along the camera direc-
tion ~w. Equation (2) integrates scattered light at all points along
xw = x − w~w until the nearest surface at distance s. The inner
integral computes in-scattered radiance which recursively depends
on radiance arriving at xw from directions ~v on the sphere Ω4π .

3.2 Photon Beams

Photon mapping methods approximate the medium radiance (2) us-
ing a collection of photons, each with a power, position, and di-
rection. Instead of performing density estimation on just the po-
sitions of the photons, the recent photon beams approach [Jarosz
et al. 2011] treats each photon as a beam of light starting at the pho-
ton position and shooting in the photon’s outgoing direction. Jarosz
et al. derived a “Beam × Beam 1D” estimator which directly com-
putes medium radiance (2) due to photon beams along a query ray.

We summarize the main ideas here and use a coordinate system
(~u, ~v, ~w) where ~w is the query ray direction, ~v is the direction of
the photon beam, and ~u = ~v × ~w is the direction perpendicular to
both the query ray and the photon beam (see Figure 2).

To estimate radiance due to a photon beam, we treat the beam as an
infinite number of imaginary photon points along its length (Fig-
ure 2, right). The power of the photons is blurred in 1D, along ~u.

An estimate of the incident radiance along the direction ~w using
one photon beam can be expressed as [Jarosz et al. 2011]:

Lm(x, ~w, r) ≈ kr(u)σs(xw) ΦTr(w)Tr(v)
f(~w · ~v)

sin(~w, ~v)
, (3)

where Φ is the power of the photon, and the scalars (u, v, w) are
signed distances along the three axes to the imaginary photon point
closest to the query ray (the point on the beam closest to the ray
~w). The first transmittance term accounts for attenuation through a
distancew to x, and the second computes the transmittance through
a distance v to the start of the beam. The photon beam is blurred

using a 1D kernel kr centered on the beam with a support width of
r along direction ~u. This is illustrated in Figure 2.

In practice, Equation (3) is evaluated for many beams to obtain a
high quality image and is a consistent estimator like standard pho-
ton mapping. In other words, it produces an unbiased solution when
using an infinite number of beams with an infinitesimally-small blur
kernel. This is an important property which we will use later on.

However, obtaining an unbiased result requires storing an infinite
number of beams, and using an infinitesimal blurring kernel; neither
of which are feasible in practice. In Section 4.1 we analyze the
variance and bias of Equation (3) in order to develop a progressive,
memory-bounded consistent estimator in the spirit of PPM.

3.3 Progressive Photon Mapping

Though a full derivation is outside the scope of this paper, we pro-
vide an overview of PPM for completeness, summarizing the ap-
proach used by Knaus and Zwicker [2011]. Their method builds on
a probabilistic analysis of the error in radiance estimation. They
model the error as consisting of two components: its variance
(noise) and its expected value (bias). The main idea in PPM is to
average a sequence of images generated using independent photon
maps. The key insight is that radiance estimation can be performed
such that both the variance and the expected value of the average
error are reduced continuously as more images are added. There-
fore, PPM achieves noise- and bias-free results in the limit.

Denote the error of radiance estimation in pass i at some point in the
scene by εi. The average error after N passes is ε̄N = 1

N

∑N
i=1 εi.

Since each image i uses a different photon map, the errors εi can
be interpreted as samples of independent random variables. Hence,
the variance (noise) and expected value (bias) of average error are

Var[ε̄N ] =
1

N2

N∑
i=1

Var[εi] and E[ε̄N ] =
1

N

N∑
i=1

E[εi]. (4)

Convergence in progressive photon mapping is obtained if the av-
erage noise and bias go to zero simultaneously as the number of
passes goes to infinity, i.e., as N →∞,

A) Var[ε̄N ]→ 0

B) E[ε̄N ]→ 0

}
=⇒ convergence. (5)

Observe from Equation (4) that if the same radii were used in the
radiance estimate in each pass, the variance of the average error
would be reduced, but the bias would remain the same. The main
trick of PPM is to decrease the radiance estimation radii in each
pass by a small factor. This increases variance in each pass, but
only so much that the variance of the average still vanishes. At the
same time, reducing the radii decreases the bias, hence achieving
the desired convergence. We extend this theory in the next section,
applying it to radiance estimation using photon beams.

4 Progressive Photon Beams
The goal of our rendering technique is to compute the contribution
of media radiance Lm to pixel values c. Figure 3 illustrates the
problem schematically. Mathematically, we formulate this as:

c =

∫∫
W (x, ~w)Lm(x, ~w) dx d~w, (6)

where W is a function that weights the contribution of Lm to the
pixel value (accounting for antialiasing, glossy reflection, depth-of-
field, etc.). We compute c by tracing a number of paths N from
the eye, evaluatingW , and evaluating the media radiance Lm. This
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forms a Monte Carlo estimate c̄N for c:

c̄N =
1

N

N∑
i=1

W (xi, ~wi)Lm(xi, ~wi)

p(xi, ~wi)
, (7)

where p(xi, ~wi) denotes the probability density of generating a par-
ticular position and direction when tracing paths from the eye and
Lm is approximated using photon beams.

The photon beam approximation of the media radiance introduces
an error, which we can make explicit by redefining Equation (3) as:

Lm(x, ~w, r) = kr(u) γ + ε(x, ~w, r), (8)

where all terms in Equation (3) except for the kernel have been
folded into γ. The error term ε, is the difference between the true ra-
diance Lm(x, ~w) and the radiance estimated using a photon beam
with a kernel of radius r. To prove convergence of this algorithm
we need to perform an in-depth analysis of this error.

4.1 Error Analysis of Photon Beam Density Estimation

We first analyze the variance Var[ε(x, ~w, r)] of the error (noise),
and expected value E[ε(x, ~w, r)] of the error (bias) for the case
of one beam. We then generalize the result for the case of many
beams. This is a key step that is necessary to derive a progressive
estimate for photon beams, and allows us to assign different kernel
radii to each beam. Our analysis builds on the technique of Knaus
and Zwicker and extends it to work with photon beams. We provide
in-depth derivations of certain steps in the appendices.

Since photon beams are generated using stochastic ray tracing, we
can interpret the 1D distance u between a photon beam and a query
ray ~w as independent and identically distributed samples of a ran-
dom variable U with probability density p~wU . The photon contri-
butions γ can take on different values, which we again model as
samples of a random variable. We assume that u and γ are inde-
pendent. γ incorporates several terms: σs, Φ, and the transmittance
along w are all independent of u, and the remaining terms depend
on v. Graphically, we assume that if we fix our query location and
generate a random beam, the distances u and v (Figure 2, right) are
mutually independent (note that these measure distance along or-
thogonal directions). This assumption need only hold locally since
only beams close to a query ray contribute. Additionally, as the
beam radii decrease, the accuracy of this assumption increases.

Variance using One Photon Beam. To derive the variance of
the error we also assume that locally (within the 1D kernel’s support
at ~w), the distance u between the beam and view ray is a uniformly

distributed random variable. This is similar to the uniform lo-
cal density assumption used in previous PPM methods [Hachisuka
et al. 2008; Knaus and Zwicker 2011]. We show in Appendix A
that under these assumptions, the variance can be expressed as:

Var[ε(x, ~w, r)] =
(Var[γ] + E[γ]2) p~wU (0)C1

r
(9)

where C1 is a constant derived from the kernel, and p~wU (0) is the
probability density of a photon beam intersecting the view ray ~w
exactly. This result states that the variance of beam radiance esti-
mation increases linearly if we reduce the kernel radius r.

Expected Error using One Photon Beam. On the other hand,
in Appendix B we show that, for some constant C2, the expected
error decreases linearly as we reduce the kernel support r:

E[ε(x, ~w, r)] = rE[γ]C2. (10)

Using Many Beams. In practice, the photon beam method gener-
ates images using more than one photon beam at a time. Moreover,
the photon beam widths need not be equal, but could be determined
adaptively per beam using e.g. photon differentials [Schjøth et al.
2007]. We can express this by generalizing Equation (8) as:

Lm(x, ~w, r1 . . . rM ) =
1

M

M∑
j=1

krj (uj) γj − ε(x, ~w, r1 . . . rM ).

In Appendix C we show that if we use M beams, each with their
own radius rj at ~w, the variance of the error is:

Var[ε(x, ~w, r1 . . . rM )] =
1

M

(Var[γ] + E[γ]2) p~wU (0)C1

rH
, (11)

where rH is the harmonic mean of the radii, 1/rH = 1
M

∑
1
rj

. This
includes the expected behavior that variance decreases linearly with
the number of emitted photon beams M .

Furthermore, we show that the expected error is now (Appendix D):
E[ε(x, ~w, r1 . . . rM )] = rA E[γ]C2, (12)

where rA is the arithmetic mean of of the photon radii. Note that
this does not depend on M , so the expected error (bias) will not
decrease as we use more photon beams.

To be absolutely precise, this analysis requires that the minimum
radius in any pass be non-zero (to avoid infinite variance) and the
maximum radius be finite (to avoid infinite bias). In practice en-
forcing some bounds is not a problem and the high-level intuition
remains the same: the variance increases linearly and expected er-
ror decreases linearly if we globally decrease all the beam radii as
well as these radii bounds. It is also worth highlighting that for pho-
ton beams this relationship is linear due to the 1D blurring kernel.
This is in contrast to the analysis performed by Knaus and Zwicker,
which resulted in a quadratic relationship for the standard radiance
estimate on surfaces and a cubic relationship for the volumetric ra-
diance estimate using photon points.

Summary. Our analysis generalizes previous work in two impor-
tant ways. Firstly, we consider the more complicated case of photon
beams, and secondly, we allow the kernel radius to be associated
with data elements (e.g. photons or photon beams) instead of the
query location (as in k-nearest neighbor estimation). This second
feature allows variable kernel density estimation in any PPM con-
text, such as density estimation on surfaces using photons points.
This analysis could also be applied in modified form to any of the
other volumetric radiance estimates summarized by Jarosz et al.
[2011] to form convergent algorithms, such as the beam radiance
estimate [Jarosz et al. 2008] using photon points. The only effec-
tive change is that blur dimensionality (1D, 2D, or 3D) will dictate
whether the variance and bias relationship is linear, quadratic or
cubic.
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4.2 Achieving Convergence

To obtain convergence using the approach outlined in Section 3.3
we show how to enforce conditions A and B from Equation (5).
The key idea of PPM is to let variance increase slightly in each pass,
but in such a way that the variance of the average error still vanishes.
Increasing variance allows us to reduce the kernel scale (11), which
in turn reduces the expected error of the radiance estimate (12).

Variance of Average Error. Knaus and Zwicker [2011] showed
that convergence in PPM can be achieved by enforcing the follow-
ing ratio of variance between passes:

Var[εi+1]

Var[εi]
=
i+ 1

i+ α
(13)

where α is a user specified constant between 0 and 1. Given the
variance of the first pass, this ratio induces a variance sequence,
where the variance of the ith pass is predicted as:

Var[εi] = Var[ε1]

(
i−1∏
k=1

k

k + α

)
i. (14)

Using this ratio, the variance of the average error after N passes
can be expressed in terms of the variance of the first pass Var[ε1]:

Var[ε̄N ] =
Var[ε1]

N2

(
1 +

N∑
i=2

(
i−1∏
k=1

k

k + α

)
i

)
, (15)

which vanishes as desired when N → ∞. Hence, if we could
enforce such a variance sequence we would satisfy condition A.

Radius Reduction Sequence. In our approach, we use a global
scaling factor Ri to scale the radius of each beam, as well as the
minimum and maximum radii bounds, in pass i. Note that scaling
all radii by Ri scales their harmonic and arithmetic means by Ri as
well. Our goal is to modify the radii such that the increase in vari-
ance between passes corresponds to Equation (13). We can enforce
this by plugging in our expression for variance (11) into this ratio.
Since variance is inversely proportional to beam radius, we obtain:

Ri+1

Ri
=

Var[εi]

Var[εi+1]
=
i+ α

i+ 1
(16)

Given an initial scaling factor of R1 = 1, this ratio induces a se-
quence of scaling factors

Ri =

(
i−1∏
k=1

k + α

k

)
1

i
, (17)

Expected Value of Average Error. Since the expected error is
proportional to the average radius (12), we can obtain a relation
regarding the expected error of each pass from Equation (17):

E[εi] = E[ε1]Ri, (18)

where ε1 is the error of the first pass. We can solve for the expected
value of the average error in a similar way to Equation (15):

E[ε̄i] =
E[ε1]

N

(
1 +

N∑
i=2

(
i−1∏
k=1

k + α

k

)
1

i

)
. (19)

Knaus and Zwicker [2011] showed that such an expression vanishes
as N →∞. Hence, by using the radius sequence in Equation (17),
we furthermore satisfy B.

4.3 Empirical Validation

We validate our algorithm against a reverse path tracing reference
solution of the DISCO scene. This is an incredibly difficult scene
for unbiased path sampling techniques. We compute many con-
nections between each light path and the camera to improve con-
vergence. Unfortunately, since the light sources in this scene are
point lights, mirror reflections of the media constitute SMS sub-
paths which cannot be simulated. We therefore visualize only me-
dia radiance directly visible by the camera and compare to the me-
dia radiance using PPB. The reference solution in Figure 4 (bot-
tom) took over 3 hours to render while our technique requires only
3 minutes (including S(D|M)S subpaths, as in Figure 1, which are
not visualized here). We use α = 0.7 and 19.67M beams in total.

We also numerically validate our error analysis by examining the
noise and bias behavior (for three values of α) of the highlighted
point in the SPHERECAUSTIC scene in Figure 5. We use pro-
gressive photon beams to simulate multiple scattering and multiple
specular bounces of light in the glass. We compute 10,000 indepen-
dent runs of our simulation and compare these empirical statistics
to the theoretical behavior predicted by our models.

Figure 6 (left) shows the sample variance of the radiance estimate
as a function of the iterations. Since our theoretical error model de-
pends on some scene-dependent constants which are not possible to
estimate in the general case, we fit these constants to the empirical
data. We gather statistics for α = 0.1, 0.5, and 0.9, showing the
effect of this parameter on the convergence. The top curves in Fig-
ure 6 (left) show the variance of each pass, Var[εi], increases, as
predicted by Equation (14). The lower curves in Figure 6 (left)
show that variance of the average error, Var[ε̄i], decreases after
each pass as Equation (15) predicts. We also examine the expected
average error (bias) in Figure 6 (right). This experiment show that
both the bias and noise decay with the number of passes.

1 pass1 pass 10 passes10 passes 100 passes100 passes

A .

Figure 5: The SPHERECAUSTIC scene contains a glass sphere, an
anisotropic medium, and a point light. We shoot 1K beams per pass
and obtain a high-quality result in 100 passes (right,∼10 seconds).
In Figure 6 we analyze bias and variance of the highlighted point.

5 Algorithm
The inner loop of our algorithm uses the standard two-pass photon
beams algorithm [Jarosz et al. 2011].
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Figure 6: Plots of per-pass variance Var[εi] and average variance
Var[ε̄i] (left), and bias E[ε̄i] (right) with three α settings for the
highlighted point in Figure 5. Empirical results closely match the
theoretical models we derive in Section 4.1. The noise in the empir-
ical curves is due to a limited number (10K) of measurement runs.

In the first pass, photon beams are emitted from lights and scatter at
surfaces and media in the scene. Other than computing appropriate
beam widths, this pass is effectively identical to the photon trac-
ing in volumetric and surface-based photon mapping [Jensen 2001].
We determine the kernel width of each beam by tracing photon dif-
ferentials during the photon tracing process. We also automatically
compute and enforce radii bounds to avoid infinite variance or bias.

In the second pass, we compute radiance along each ray using
Equation (3). For homogeneous media, this involves a couple expo-
nentials and scaling by the scattering coefficient and foreshortened
phase function. We discuss heterogeneous media in Section 5.2.

In our progressive estimation framework, we repeat these two steps
in each progressive pass, scaling the widths of all beams (and the
radii bounds) by the global scaling factor.

5.1 User Parameters

Our goal is to provide the user with a single intuitive parameter
to control convergence. In standard PPM a number of parameters
influence the algorithm’s performance: the bias-noise tradeoff α ∈
(0, 1), the number of photons per pass M , and either a number of
nearest neighbors k or an initial global radius.

Unfortunately, the parameters α and M both influence the bias-
noise tradeoff in an interconnected way. Since the radius is updated
each pass, increasingM means that the radius is scaled more slowly
with respect to the total number of photons after N passes. This is
illustrated in differences between red and green curves in Figure 7.

Given two progressive runs, we would hope to obtain the same out-
put image if the same total number of beams have been shot, regard-
less of the number M per pass. We provide a simple improvement
that achieves this intuitive behavior by reducing the effect of M
on the bias-noise tradeoff. Our solution is to always apply M pro-
gressive radius updates after each pass. This induces a piecewise
constant approximation of M = 1 for the radius reduction, at any
arbitrary setting of M (see the blue curves in Figure 7 and compare
to the green curves). This modifies Equations (16) and (17) to:

Ri+1

Ri
=

M∑
j=1

(i− 1)M + j + α

(i− 1)M + j + 1
, Ri =

(
Mi−1∏
k=1

k + α

k

)
1

Mi
.

It is clear that variance still vanishes in this modified scheme, since
the beams in each pass have larger (or for the first pass equal) radii
to the “single beam per pass” (M = 1) approach. The expected
error vanishes because eventually the scaling factor is still zero.
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M=1
Standard Approach (M=15, M=100)
Our Approach (M=15, M=100)

Figure 7: Plotting the global radius scaling factor, with varyingM ,
the standard approach produces vastly different scaling sequences
for a progressive simulation using the same total number of stored
photons. We reduce the scale factorM times after each pass, which
approximates the scaling sequence of M = 1 regardless of M .

5.2 Evaluating γ in Heterogeneous Media

In theory, our error analysis and convergence derivation in Section 4
apply to both homogeneous and heterogeneous media – the proper-
ties of the medium are encapsulated in the random variable γ. To
realize a convergent algorithm for heterogeneous media, however,
we need a way to evaluate the scattering properties and compute
the transmittances contained in γ. To handle heterogeneous media,
Jarosz et al. [2011] proposed storing a sampled representation of
the transmittance function along each beam and numerically evalu-
ating transmittance to the camera. Unfortunately, the standard ap-
proach for computing transmittance, ray marching, is biased, and
would compromise our algorithm’s convergence. To prevent this,
our transmittance estimator must be unbiased.

We can form such an unbiased estimator by using mean-free path
sampling as a black-box. Given a function, d(x, ~ω), which returns
a random propagation distance from a point x in direction ~ω, the
transmittance between x and a point s units away in direction ~ω is

Tr(x, ~ω, s) = E

[
1

n

n∑
j=0

H(d(x, ~ω)− s)

]
, (20)

where H is the Heaviside step function. This estimates transmit-
tance by counting samples that successfully propagate a distance
≥ s.
This has immediate utility for rendering photon beams in het-
erogeneous media. A naı̈ve solution could numerically compute
the two transmittance terms in Equation (8) using Equation (20).
This approach can be applied to both homogeneous media, where
d(x, ~ω) = − log(1 − ξ)/σt, and to heterogeneous media, where
d(x, ~ω) can be implemented using Woodcock tracking [Woodcock
et al. 1965]. Woodcock tracking is a technique developed in the
particle physics field for unbiased mean-free path sampling. Sev-
eral recent graphics techniques [Raab et al. 2008; Szirmay-Kalos
et al. 2011] have employed this, in combination with Equation (20),
for estimating transmittance in heterogeneous media.

Though this approach converges to the correct result, it is ineffi-
cient, since there are many ray/beam intersections to evaluate and
each evaluation requires many samples to obtain low variance. Our
solution builds upon this technique to more efficiently evaluate
transmittance for all ray/beam intersections. We first consider trans-
mittance towards the eye, and then transmittance along each photon
beam.
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Figure 8: Validation of progressive deep shadow maps (blue) for
extinction functions (green) with analytically-computable transmit-
tances (red). Here we use four random propagation distances, re-
sulting in a four-step approximation of transmittance in each pass.

5.2.1 Progressive Deep Shadow Maps

The key to a more efficient approach is that each execution of
Equation (20) actually provides enough information for an unbi-
ased evaluation of the transmittance function for all distances along
the ray, and not just the transmittance value at a single distance
s. We achieve this by computing all n propagation distances and
re-evaluating Equation (20) for arbitrary values of s. This results
in an unbiased, piecewise-constant representation of the transmit-
tance function, as illustrated in Figure 8 (left). The collection of
transmittance functions across all primary rays could be viewed as
a deep shadow map [Lokovic and Veach 2000] from the camera.
Deep shadow maps also store multiple distances to approximate
transmittance; however, the key difference here is that our transmit-
tance estimator remains unbiased, and will converge to the correct
solution when averaged across passes. In Appendix E we prove this
convergence and in Figure 8 we validate it empirically for hetero-
geneous media with closed-form solutions to transmittance.

We similarly accelerate transmittance along each beam. Instead of
repeatedly evaluating Equation (20) at each ray/beam intersection,
we compute and store several unbiased random propagation dis-
tances along each beam. Given these distances, we can re-evaluate
transmittance using Equation (20) at any distance along the beam.
The collection of transmittance functions across all photon beams
forms an unstructured deep shadow map which converges to the
correct result with many passes.

5.2.2 Effect on Error Convergence

When using Equation (20) to estimate transmittance, the only ef-
fect on the error analysis is that Var[γ] in Equations (9) and (11)
increases compared to using analytic transmittance (note that bias
is not affected since E[γ] does not change with an unbiased esti-
mator). Homogeneous media could be rendered using the analytic
formula or using Equation (20). Both approaches converge to the
same result (top row of Figure 8), but the Monte Carlo estimator
for transmittance adds additional variance. We therefore use ana-
lytic transmittance in the case of homogeneous media.

6 Implementation and Results
We demonstrate the generality and flexibility of our approach with
several efficient implementations of our theory. First, we introduce
our most general implementation, which is a CPU-GPU hybrid ca-

pable of rendering arbitrary surface and volumetric shading effects,
including complex paths with multiple reflective, refractive and vol-
umetric interactions in homogeneous or heterogeneous media. We
also present two GPU-only implementations: a GPU ray-tracer ca-
pable of supporting general lighting effects, and a rasterization-only
implementation that uses a custom extension of shadow-mapping to
accelerate beam tracing. Both the hybrid and rasterization demos
exploit a reformulation of the beam radiance estimate as a splatting
operation, described in Section 6.1.

6.1 Hybrid Beam Splatting and Ray-Tracing Renderer

Our most general renderer combines a CPU ray tracer with GPU
rasterization. The CPU ray tracer handles the photon shooting pro-
cess. For radiance estimation, we decompose the light paths into
ones that can be easily handled using GPU-accelerated rasteriza-
tion, and handle all other light paths with the CPU ray tracer. We
rasterize all photon beams which are directly visible by the camera.
The CPU ray tracer handles the remaining light paths, such as those
visible only via reflections/refractions off of objects.

We observe that Equation (3) has a simple geometric interpreta-
tion, (Figure 2): each beam is an axial-billboard [Akenine-Möller
et al. 2008] facing the camera. As in the standard photon beams
approach, our CPU ray tracer computes ray-billboard intersections
with this representation. However, we exploit the fact that for
directly-visible beams, Equation (3) can be reformulated as a splat-
ting operation amenable to GPU rasterization.

We implemented our hybrid approach in C++ using OpenGL. In our
implementation, after CPU beam shooting, we generate the photon
beam billboard quad geometry for every stored beam on the CPU.
This geometry is rasterized with GPU blending enabled and a sim-
ple pixel shader evaluates Equation (3) for every pixel under the
support of the beam kernel on the GPU. We additionally cull the
beam quads against the remaining scene geometry to avoid com-
puting radiance from occluded beams. To handle stochastic effects
such as anti-aliasing and depth-of-field, we Gaussian jitter the cam-
era matrix in each pass. The CPU component handles all other light
paths using Monte Carlo ray tracing with a single path per pixel per
pass. We obtain distribution effects like glossy reflections by using
different stochastic Monte Carlo paths in each pass.

For homogeneous media, the fragment shader evaluates Equa-
tion (3) using two exponentials for the transmittance. We use sev-
eral layers of simplex noise [Perlin 2001] for heterogeneous media,
and follow the approach derived in Section 5.2.1. For transmit-
tance along a beam, we compute and store a fixed number nb of
random propagation distances along each beam using Woodcock
tracking (in practice, nb = 4 to 16). Since transmittance is con-
stant between these distances, we split each beam into nb quads
before rasterizing and assign the appropriate transmittance to each
segment using Equation (20). For transmittance towards the cam-
era, we construct a progressive deep shadow map on the GPU using
Woodcock tracking. This is updated before each pass, and accessed
by the beam fragment shader to evaluate transmittance to the cam-
era. We implement this by rendering to an off-screen render tar-
get and pack 4 propagation distances per pixel into a single RGBA
output. We use the same random sequence to compute Woodcock
tracking for each pixel within a single pass. This replaces high-
frequency noise with coherent banding while remaining unbiased
across many passes. This also improves performance slightly due
to more coherent branching behavior in the fragment shader. We
support up to nc = 12 distances per pixel in our current imple-
mentation (using 3 render targets); however, we found that using a
single RGBA texture is a good performance-quality compromise.



Figure 9: We render media radiance in the CHANDELIER scene
with 51.2M beams in about 3 minutes. Diffuse shading (which is
not our focus) using PPM took an additional 100 minutes.

6.1.1 Results

We demonstrate our hybrid implementation on several scenes with
complex lighting and measure performance on a 12-core 2.66 GHz
Intel Xeon 12GB with an ATI Radeon HD 5770. In Figure 1 we
show the CARS, DISCO, and FLASHLIGHTS scenes in both ho-
mogeneous and heterogeneous media, including zoomed insets of
the media illumination showing the progressive refinement of our
algorithm. The scenes are rendered at 1280 × 720, and they in-
clude depth-of-field and antialiasing. In addition, the CHANDE-
LIER scene in Figure 9 is 10242. The lights in these scenes are all
modeled realistically with light sources inside reflective/refractive
fixtures. All illumination encounters several specular bounces be-
fore arriving at surfaces or media, making these scenes impractical
for path tracing. We use PPM for surface shading, but focus on
performance and quality of the media scattering using PPB.

The CARS scene contains a few million triangles and 16 lights, all
encased in glass. We obtain the results in Figure 1 in 9.5 minutes for
homogeneous and in 16.8 minutes for heterogeneous media (with
an additional 34.2 minutes for shading on diffuse surfaces using
PPM). The DISCO scene contains a mirror disco ball illuminated
by 6 lights inside realistic Fresnel-lens casings. Each Fresnel light
has a complex emission distribution due to refraction, and the re-
flections off of the faceted sphere produce intricate volume caustics.
We render the media radiance in 3 minutes in homogeneous and 5.7
minutes in heterogeneous media. The surface caustics on the wall
of the scene require another 7.5 minutes. The FLASHLIGHTS scene
renders in 8.0 minutes and 10.8 minutes respectively using 2.1M
beams (diffuse shading takes an additional 124 minutes). These re-
sults highlight that heterogeneous media incurs only a marginal per-
formance penalty over homogeneous media using photon beams.

Beam storage includes: start and end points (2× 3 floats), differen-
tial rays (2×2×3 floats), and power (3 floats). A scene-dependent
acceleration structure is also necessary, and even for a single bound-
ing box per beam this is 2× 3 floats (we use a BVH and implicitly
split beams as described in Jarosz et al. [2011]). We did not op-
timize our implementation for memory usage as our approach is
progressive, but even with careful tuning this would likely be above
100 bytes per beam. Thus, even in simple scenes, beam storage
can quickly exceed available memory: e.g., the intricate refractions
in the CHANDELIER scene (Figure 9) require over 51M beams for
high-quality results. This would exceed 5.2 GB of memory even
with the conservative 100 bytes/beam estimate. We render this in 3
minutes using our progressive approach.

We also provide a real-time preview using our GPU rasterization:
as the user modifies scene parameters, the directly visible beams
are visualized at high frame rates with GPU splatting; once the user
finishes editing, the CPU ray-tracer results are computed and com-
bined with the GPU results, generating a progressively refined solu-
tion. This interaction allows immediate feedback. We demonstrate

this in the accompanying video for the DISCO and SPHERECAUS-
TIC scenes in homogeneous and heterogeneous media.

In Figure 10 we render the SOCCER scene from Sun et al. [2010]
in about a minute using our CPU/GPU hybrid. For high-quality
results similar to ours, Sun et al.’s algorithm requires 73 minutes
on the CPU or 6.5 minutes on the GPU. Their method only con-
siders single scattering, whereas we also include several bounces
of multiple scattering. The lines in line-space gathering are similar
to photon beams; however, these lines are all blurred with a fixed
width kernel (producing cylinders). Our beams use adaptive kernels
with ray differentials, which explains how we obtain higher qual-
ity results using fewer beams. Also, we use rasterization for large
portions of the illumination which improves performance.

Our method (16 passes) Our method (512 passes) [Sun et al. 2010]
7.5 seconds CPU+GPU 61 seconds CPU+GPU 73 min (CPU); 6.5 min (GPU)

Figure 10: The SOCCER scene (Sun et al. [2010]) takes about 1
minute to render using 512K beams. We simulate complex caustics
due to the glass figure but also include several bounces of multiple
scattering, which Sun et al. cannot handle.

6.2 Raytracing on the GPU

We also implemented our approach using the OptiX [Parker et al.
2010] GPU ray tracing API. Our OptiX renderer implements two
kernels: one for photon beam shooting, and one for eye ray tracing
and progressive accumulation. We shoot and store photon beams,
in parallel, on the GPU. The shading kernel traces against all scene
geometry and photon beams, each stored in their own BVH, with
volumetric shading computed using Equation (3) at each beam in-
tersection.

6.2.1 Results

We demonstrate this implementation on the BUMPYSPHERE scene
from Walter et al. [2009] shown in Figure 11 and measure per-
formance on a 6-Core Intel Core i7 X980 3.33 GHz 12GB with
an NVIDIA GTX 480 graphics card. This scene contains a de-
formed refractive sphere filled with a homogeneous medium. The
refractions at the surface interface create intricate internal volume
caustics. We render this scene at a resolution of 5122 at interac-
tive rates with 1K beams per pass, and produce a crisp reference-
quality solution in about 13 seconds (significantly faster than pre-
vious work [Walter et al. 2009; Jarosz et al. 2011]). The accompa-
nying video shows this scene rendered interactively with dynamic
light and camera.

1 pass (0.1 seconds)1 pass (0.1 seconds) 10 passes (1.2 seconds)10 passes (1.2 seconds) 1000 passes (13 seconds)1000 passes (13 seconds)

Figure 11: We render the BUMPYSPHERE scene (Walter et
al. [2009]) with the OptiX GPU ray tracing API using 1K beams
per pass at interactive rates, converging (right) in 13.3 seconds.



6.3 Augmented Shadow Mapping for Beam Shooting

We also implemented a real-time GPU renderer that only uses
OpenGL rasterization in scenes with a limited number of specu-
lar bounces. We extend shadow mapping [Williams 1978] to trace
and generate beam quads that are visualized with GPU rasterization
as in Section 6.1. McGuire et al. [2009] also used shadow maps, but
for photon splatting on surfaces. We generate and splat beams, ex-
ploiting our progressive framework to obtain convergent results.

We prepare a light-space projection transform (as in standard
shadow mapping) used to rasterize the scene from the light’s view-
point. Instead of recording depth for each shadow map texel, each
texel instead produces a photon beam. At the hit-point, we compute
the origin and direction of the central beam as well as the auxiliary
differential rays. The differential ray intersection points are com-
puted using differential properties stored at the scene geometry as
vertex attributes, interpolated during rasterization. Depending on
whether the light is inside or outside a participating medium, beam
directions are reflected and/or refracted at the scene geometry’s in-
terface. This entire process is implemented in a simple pixel shader
that outputs to multiple render-targets. Depending on the number of
available render targets, several (reflected, refracted, or light) beams
can be generated per render pass.

We map the render target outputs to vertex buffers and render points
at the beam origins. The remainder of the beam data is passed as
vertex attributes to the point geometry, and a geometry shader con-
verts each point into an axial billboard. These quads are then ren-
dered using the same homogeneous shader as our hybrid demo in
Section 6.1. To ensure convergence, the shadow map grid is jittered
to produce a different set of beams each pass. This end-to-end ren-
dering procedure is carried out entirely with GPU rasterization, and
can render photon beams that emanate from the light source as well
as those due to a single surface reflection/refraction. Though we
currently do not support this in our implementation, two specular
bounces could be handled using approximate ray tracing through
geometry images as in Liktor and Dachsbacher [2011].

6.3.1 Results

For interactive and accurate lighting design, we use a 642 shadow
map, generating 4K beams, and render progressive passes in less
than 2 ms per frame for the ocean geometry with 1.3M triangles.
By jittering the perspective projection, we can also incorporate anti-
aliasing and depth-of-field effects. Since every progressive pass
reduces the beam width, higher passes render significantly faster.
Figure 12 illustrates the OCEAN scene, where the viewer sees light
beams refracted through the ocean surface and scattering in the
ocean’s media. The progressive rasterization converges in less than
a second. We show real-time results in the supplemental video.

Figure 12: We render the OCEAN scene in real-time using GPU
rasterization with 4K beams at around 600 FPS (< 2 ms). The
image after 20 passes (left) renders at around 30 FPS (33 ms). The
high-quality result renders in less than a second (right, 450 passes).

7 Limitations and Future Work
Even with progressive deep shadow maps, the heterogeneous ver-
sion of our algorithm is slower than the homogeneous form. We

found that performance loss of each pass is primarily due to multi-
ple evaluations of Perlin noise, which is quite expensive both on the
GPU and CPU. Accelerated variants of Woodcock tracking [Yue
et al. 2010; Szirmay-Kalos et al. 2011] could help to reduce the
number of density evaluations needed for free-path sampling.

In addition to increased cost per pass, the Monte Carlo transmit-
tance estimator increases variance per pass. Though we found that
our approach worked reasonably well for our test scenes, the vari-
ance of the transmittance estimate increases with distance (where
fewer random samples propagate). More precisely, at a distance
where transmittance is 1%, only 1% of the beams contribute, which
results in higher variance. The worse-case scenario is if both the
camera and light source are very far away from the subject (or, con-
versely, if the medium is optically thick) since most of the beams
terminate before reaching the subject, and most of the deep shadow
map distances to the camera result in zero contribution. An unbi-
ased transmittance estimator which falls off to zero in a piecewise-
continuous, and not piecewise-constant, fashion could alleviate this.
Another possibility is to incorporate ideas from Markov Chain
Monte Carlo or adaptive sampling techniques to reduce variance.

In our implementation, α controls the tradeoff between reduc-
ing variance and bias and is set to a constant. The initial beam
radii also significantly influence the tradeoff between bias and vari-
ance. Though our error analysis predicts this tradeoff, it is scene-
independent. A scene-dependent, and spatially varying error analy-
sis like the one by Hachisuka et al. [2010] could lead to adaptively
choosing α, or the initial beam radii, to optimize convergence.

8 Conclusion
We presented progressive photon beams, a new algorithm to render
complex illumination in participating media. The main advantage
of our algorithm is that it converges to the gold standard of render-
ing, i.e., unbiased, noise free solutions of the radiative transfer and
the rendering equation, while being robust to complex light paths
including S(D|M)S subpaths. We showed how PPM can be com-
bined with photon beams in a simple and elegant way: in each iter-
ation, we only need to reduce a global scaling factor that is applied
to the beam radii. We presented a theoretical analysis to derive suit-
able scaling factors that guarantee convergence, and we empirically
validated our approach. We demonstrated the flexibility and gen-
erality of our algorithm using several practical implementations: a
CPU-GPU hybrid with an interactive preview option, a GPU ray
tracer, and a real-time GPU renderer based on a shadow mapping
approach. We also exploited a splatting formulation for beams di-
rectly visible to the camera and demonstrated how beams can be
used efficiently in heterogeneous media. Our implementations un-
derline the practical usefulness of our progressive theory and its
applicability to different scenarios.
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A Variance of Beam Radiance Estimation
The variance of the error in Equation (8) is:

Var[ε(x, ~w, r)] = Var [kr(U) γ − L(~w)] (21)

= Var[kr(U)](Var[γ] + E[γ]
2
) + Var[γ]E[kr(U)]

2
. (22)

Using the definition of variance, we have:

Var[kr(U)] =

∫
Ω

kr(ξ)
2
p
~w
U (ξ) dξ −

[∫
Ω

kr(ξ)p
~w
U (ξ) dξ

]2

, (23)

where Ω is the kernel’s support. We assume that locally (within Ω), the distance be-
tween the beam and ray is a uniformly distributed random variable. Hence, the pdf
within the kernel support is constant and equal to the probability density of an imagi-
nary photon landing a distance 0 from our view ray ~w: p~wU (ξ) = p~wU (0). We have:

Var[kr(U)] = p
~w
U (0)

∫
Ω

kr(ξ)
2
dξ −

 p~wU (0)

∫
Ω

kr(ξ) dξ︸ ︷︷ ︸
=1

2

(24)

= p
~w
U (0)

∫
Ω

kr(ξ)
2
dξ − p~wU (0)

2

= p
~w
U (0)

[∫
Ω

kr(ξ)
2
dξ − p~wU (0)

]
= p

~w
U (0)

[
1

r

∫
R
k

(
ξ

r

)2

dξ − p~wU (0)

]
. (25)

The last step replaces kr with an equivalently-shaped unit kernel k. Inserting into
Equation (22), and noting that E[kr(U)] = p~wU (0) under the uniform density as-
sumption, we have

Var[ε(x, ~w, r)] = p
~w
U (0)

[
1

r

∫
R
k

(
ξ

r

)2

dξ − p~wU (0)

]
(Var[γ] + E[γ]

2
)

+ Var[γ] p
~w
U (0)

2 (26)

≈
(Var[γ] + E[γ]2) p~wU (0)

r

[∫
R
k

(
ξ

r

)2

dξ

]
=

(Var[γ] + E[γ]2) p~wU (0)

r
C1, (27)

where the second line assumes the kernel overlaps only a small portion of the scene and
hence p~wU (0)2 is negligible. The term remaining in square brackets is just a constant
associated with the kernel, which we denote C1.

B Bias of Beam Radiance Estimation
The expected error of our single-photon beam radiance estimate is

E[ε(x, ~w, r)] = E[kr(U)γ − L(~w)] = E[γ]E[kr(U)]− L(~w). (28)

In the variance analysis in Appendix A, we assumed locally uniform densities. This is
too restrictive here since it leads to zero expected error (bias). To analyze the expected
error we instead use a Taylor expansion of the density around ξ: p~wU (ξ) = p~wU (0) +

(ξ)∇p~wU (0)+O(ξ2), and insert into the integral for the expected value of the kernel:

E[kr(U)] =
1

r

∫
R
k

(
ξ

r

)
p
~w
U (ξ) dξ (29)

=
1

r

∫
R
k

(
ξ

r

)(
p
~w
U (0) + (ξ)∇p~wU (0) +O(ξ

2
)
)
dξ, (30)

where we have used the same change of variable to a canonical kernel k. If we assume
a kernel with a vanishing first moment, then the middle term drops out, resulting in

E[kr(U)] = p
~w
U (0) +

1

r

∫
R
k

(
ξ

r

)
O(ξ

2
) dξ (31)

= p
~w
U (0) +

1

r

∫
R
k (ψ) rO(ψ

2
) r dψ (32)

= p
~w
U (0) + r

∫
R
k (ψ)O(ψ

2
) dψ︸ ︷︷ ︸

C2= p
~w
U (0) + r C2, (33)

for some constantC2. Combining with (28), and noting an infinitesimal kernel results
in the exact radiance, L(~w) = E[γ]E[δ(U)] = E[γ]p~wU (0), we obtain

E[ε(x, ~w, r)] = E[γ](p
~w
U (0) + r C2)− E[γ]p

~w
U (0) = rE[γ]C2. (34)

C Variance Using Many Photons
ForM photons in the photon beams estimate, each with their own kernel radius rj , we
have:

Var[ε(x, ~w, r1 . . . rM )] = Var

 1

M

M∑
j=1

ε(x, ~w, rj)

 (35)

=
1

M2

M∑
j=1

Var[ε(x, ~w, rj)]

=
1

M2

M∑
j=1

[
(Var[γ] + E[γ]2) p~wU (0)C1

rj

]
(36)

=
(Var[γ] + E[γ]2) p~wU (0)C1

rHM
, (37)

where we use the harmonic mean of the radii 1/rH = 1
M

∑
1
rj

in the last step.

D Expected Error Using Many Photons
We apply a similar procedure for expected error using many photon beams. We have:

E[ε(x, ~w, r1 . . . rM )] = E

 1

M

M∑
j=1

ε(x, ~w, rj)

 (38)

=
1

M

M∑
j=1

E[ε(x, ~w, rj)]

=
E[γ]C2

M

M∑
p=1

rj = rA E[γ]C2, (39)

where rA denotes the arithmetic mean of the beam radii.

E Unbiased Progressive Deep Shadow Maps
Progressive deep shadow maps simply count the number of stored propagation dis-
tances, dj , that travel further than s in each pass using Equation (20). If p(dj) denotes
the probability density (PDF) of the propagation distance dj , we have:

E

 1

n

n∑
j=0

H(dj − s)

=

∫ ∞
s

p(d) dd =

∫ ∞
s

σt(d) e
−τ(d)

dd = e
−τ(s)

, (40)

where τ(d) =
∫ d
0
σt(x+t~ω) dt denotes the optical depth. The final result, e−τ(s)

is simply the definition of transmittance, confirming that averaging progressive deep
shadow maps produces an unbiased estimator for transmittance.




