
Interactive Horizon Mapping
Peter-Pike J. Sloan Michael F. Cohen

ppsloan@microsoft.com mcohen@microsoft.com
Microsoft Research

Abstract.
Shadows play an important role in perceiving the shape and texture of an object.
While some previous interactive shadowing methods are appropriate for casting
shadows on other geometry they can not be applied to bump maps (which contain
no explicit geometry.) Horizon Mapping is a technique used to compute shadows
for bump-mapped surfaces. We map the technique into modern graphicsAPI’s and
extend it to account more accurately for the geometry of the underlying surface.
We also use it to represent limited self-shadowing for pure geometry. In mapping
the algorithm to hardware, we use a novel method to interpolate orientation in
tangent space over the surface. We show results of self-shadowing at frame rates.

1 Introduction

Shadows provide important perceptual cues for understanding surface shape. However,
it is challenging to display them while maintaining interactivity. An extensive amount
of work has been undertaken to develop algorithms to generate shadows in general -
see [11] for an excellent survey. Since shadows are essentially a visibility problem, it is
not surprising that the most common interactive techniques for generating shadows are
variants on the shadow zbuffer [10], (see [9, 12, 6] for implementations that function
with modern graphics hardware).

Bump Mapping [2] is a technique to convey surface texture by perturbing the normal
vectors of a surface. It is available on most current graphics hardware [5]. The advantage
of bump mapping is that it provides a simple way to modulate the shading on a surface.
However, since bump mapping does not define any explicit geometry, there are no actual
bumps to cast shadows. Thus, interactive shadowing techniques that rely on an explicit
representation of the geometry cannot be used to simulate shadows cast by the virtual
bumps implied in bump mapping. A concurrent paper [4] presents a way to shadow
bump maps by using implicit representations of an ellipse in the tangent plane.

This work is motivated by one particular technique for casting shadows: horizon
mapping [7]. The idea behind horizon mapping is to precompute limited visibility from
each point on a surface. In particular, the angle to the horizon is encoded in a discrete
number of directions to represent at what height something becomes visible from that
direction (i.e., pass over the horizon). This parameterization can be used to produce the
self-shadowing of geometry as well. Accessibility maps defined by Miller [8] are similar
to horizon maps. Accessibility maps only use a scalar value to represent the horizon. In
contrast, horizon maps include more detail about the horizon.

In the remainder of the paper we show how horizon maps can be encoded and passed
through current APIs to graphics hardware to produce real-time self-shadowing based
on bump maps.

1

2 Bump and Horizon Mapping

Given a surfaceP (u, v) parameterized on the unit square, a surface normalN is the
cross product of the partials of the surfacePu andPv. Given a bump mapF (u, v) a
non-negative scalar function parameterized over the same domain, the surface normal
N can be modified as follows (after dropping terms of first order):

P ′
u = Pu + FuN/|N |, P ′

v = Pv + FvN/|N |, N ′ = P ′
u × P ′

v = N + D

where

D = (FuN × Pv − FvN × Pu)/|N |
is the perturbation of the normal. Max [7] slightly modfied this so that the bump maps
behave properly over the surface. We will use normal mapping as outlined in [5]. This
modification effectively deals with parameterization dependency for the illumination,
but not for the shadowing.

As in [7] we define a mapping into the local coordinate system of the surface - this
is done through the dual of the basisPu, Pv, N whereN is theunbumpmapped surface
normal (the affine transformC−1 Max refers to). This is computed by building a matrix
with the basis as columns and inverting it, the rows of this inverse are a scaled version of
N × Pv andPu × N , along withN itself. A vector in this local frame has an associated
orientation in the tangent planeθ and an angle with the normalφ.

We are interested in knowing at each pixel whether a light vector when transformed
into the local coordinate frame is visible above the horizon. To discover this we build
a Horizon Map, φu,v,θ. The horizon map is tabulated at discreteu, v parameter values,
and in a set of directionsθ, to represent the azimuth angleφ when a light would become
visible. Typicallyu andv are sampled fairly densely (512x512), andθ is sampled more
coarsely - 8 sample directions, (N, NE, E, etc.) in both our work and in [7].

In the case of curved surfaces, the precomputed horizon map is created in terms of
the local geometry at each discrete(u, v) coordinate. This contrasts with [7] in which
there is an essential assumption made that the underlying geometry of the surface is not
known when the horizon maps are computed.

GivenM sampled directions (8 in our implementation) forθ and the discrete domain
coordinatesui, vj the horizon angleφ(ui, vj , θ) for ANY direction at coordinatesui, vj

can be found by interpolating between the discrete directions as follows:

φ(ui, vj , θ) =
M∑

k=1

Bk(θ)φ(i, j, k) (1)

whereBk(θ) is a basis function for thekth direction, which evaluates to 1 for the
corresponding direction and linearly falls of to 0 for the neighboring directions. For
example if thekth direction is east, then the value is one whenθ equals east and falls
off to zero at NE and SE. In other words, the horizon angleφ is linearly interpolated
between discrete directions, noting that since this is a radial function it wraps around
to interpolate betweenφ(i, j, 1) andφ(i, j, M). Similarly, the functionφ(u, v, θ) is
bilinearly interpolated across the parametersu andv.

To test the visibility of a light source, its direction(x, y, z) is transformed into the
local tangent frame - a simple affine transform - to provide the local coordinates(u, v, θ).
The angleθ could be determined by projecting the transformed vector onto the tangent

2

Fig. 1. Normal Map, North Horizon Map, North Basis Texture

plane. Instead, to take advantage of texture mapping hardware as explained later, the first
two transformed coordinates are used as a lookup into a table ofθ directions encoded as
a texture. This is a key element to implementing the shadowing algorithm with current
hardware.

3 General Self-Shadowing with Horizon Maps

The tangent plane parameterization and discretization used to compute shadows for
bump maps can also be used to store global visibility information about a surface in
general. The horizon angles are determined by shooting rays into the object, starting
from the horizon and moving towards the surface normal until there is no intersection.
This approach has the same limitations that horizon mapping does plus one additional
limitation - the largest angle that can be represented in the horizon map is 90 degrees out
of the tangent plane. This isn’t that significant of a problem when determining shadows
from bump maps, but can be a limitation when the gross scale of the features is more
significant, for example, when the surface has undercuts.

4 Realizations on Commodity Graphics Hardware

We will now outline the runtime shadowing algorithm and how it is implemented on
current graphics hardware. The input consists of:

• a surface geometry with a parameterization inu, v, and
• a scalar valued bump map,F (u, v)

4.1 Precomputation

A precomputation step produces:

• a vector valued perturbed normal map,N ′(u, v), from the bump map (see Fig-
ure 1).

• givenM (in our case 8) directions in the tangent plane,θk=1..M , M horizon maps,
φ(u, v, θk). With the 8 directions we will label each directionθk as N, NE, E,
etc (see Figure 1). In fact, the 8 horizon maps are collected into only 2 maps by
encoding 4 directions into the 4 color channelsR, G, B, α. Thus, for example,
the first map encodes direction N, NE, E and SE, while the other contains S, SW,
W and NW.

3

• M basis maps,Bk(s, t) representing the influence of directionθk (note this is
independent of the parameterization) (see Figure 1). As in the case of the horizon
maps, these are encoded in two maps containing 4 directions each.

• a 1D (arcos) mapping fromcos(φ) to φ.

Finally, a per vertex pre-computation is carried out to invert the non-bump mapped
local tangent frame[Pu, Pv, N]−1 = [ST , TT , NT]. This will allow us to quickly
transform the light direction onto the local tangent plane of the surface at each frame
time. For a planar surface, the local tangent plane is the same for all vertices, but varies
at each vertex over a curved surface.

4.2 At each frame time

Given the precomputation above, at each frame time, we first project the light direction
onto the local tangent plane at each vertex. The light vector when dotted with the first
two components of the inverted frameS andT yields the projection of the light vector
into the coordinate space in the tangent plane resulting in the pair,(s, t). The light vector
dotted with the normal at each vertex givescos(φL).

The remainder of the computation is carried out per pixel and is done in hardware
using multi-texturing and blending into the frame buffer.

First, set the transformations to render into UV space, (i.e., use(u, v) coordinates as
vertex coordinates). Using a blending function to add, and multi-texturing to multiply
rendering passes

• Set the multi-texturing to component-wise multiply the textures and sum the results
and place them in theα channel

• Accumulate the contribution for the first 4 directions into the frame buffer

• 1st texture is (E,NE,N,NW) basis mapB1(s, t) (Note thes, t coordinates for
each vertex are derived from the light direction.)

• 2nd texture is (E,NE,N,NW) horizon map,φ1(u, v)

• Accumulate (i.e., add) the contribution for the next 4 directions

• 1st texture is (W,SW,S,SE) basis mapB2(s, t)
• 2nd texture is (W,SW,S,SE) horizon map,φ2(u, v)

The resultingα channel now represents the horizon angle,φ, in the direction of the light.
Save results to a texture map which we will callφ(θLIGHT).

This is followed by three rendering passes with the transformations set to draw into
the current camera.

1. First Pass: Draw the model with ambient term only
2. Second Pass: Create a stencil that will only allow non-shadowed pixels to be

rendered

• Set the alpha test to only accept pixels that have non 0 alpha,
• Set the stencil test to set a bit for any pixel that passes through, and
• Set color mask to NOT write to color channels to preserve the ambient term

of the first pass.
• Set multi-texturing to subtract (note: negative values are clamped to 0)

4

• Draw using 2 sets of texture coordinates that will represent the angles to the
light and the angle to the horizon. Subtracting the two texture values will
yield positive values in theα channel where the surface sees the light and
zero (negative values are clamped to zero) where it is in shadow. The two
textures to perform this pass are:

• a 1D texture (cos(φ)->φ) (note: cos(φ) of the light was previous com-
puted at each vertex). This result contains the angle off the normal to
the light at each pixel.

• the 2D textureφ(θLIGHT) computed before. This encodes the angle
off the normal of the horizon in the direction of the light at each pixel.

3. Third pass to perform normal bump mapped rendering of the model where not in
shadow.

• Turn off alpha test
• Set color mask to allow writing of color channels
• Set stencil function to only draw pixels that have the stencil bit set.
• Set blending to add into the frame buffer to accumulate with ambient term.
• Draw using normal map - shades non-shadowed regions (i.e., standard bump

mapping).

At this point we have an image that displays an ambient only term in shadowed
regions and normal bump mapping in non-shadowed regions. We have found that a
pleasing minor variant is to create lighter shadows by having the shadowed regions
contain a toned down diffuse term rather than ambient only. This can be done in a fourth
pass by first setting the stencil function to only draw pixels that do NOT have the stencil
bit set and by then drawing the geometry one more time using normal bump mapping,
but with a scaled-down diffuse term. This fourth pass can also be combined with the first
ambient pass. Iterating on creating the light dependent horizon map and the resulting
alpha test can be done if you have multiple lights.

This algorithm can be implemented in any hardware by not leveraging dot product
fragment operations, but at a significant performance penalty. It can be coded in D3D
using DX7 (using the DOTPRODUCT3 texture mode), but only 3 directions can be
packed in a texture, however D3D support rasterizing directly into texture memory and
in DX7 this particular function/API is supported on a wider variety of boards. DX8 will
provide more general fragment processing than the register combiner extensions.

5 Results and Comments

We have computed normal maps and horizon maps for several surfaces. At 512x512
resolution in texture space it takes approximately two minutes to precompute the object
space dependent horizon maps for 8 directions. The current implementation is written in
OpenGL and leverages the NVidia register combining extensions [1] to do 4 directions
in a single pass. The triangle rendering part of the code has not been optimized to
use the vertex array extensions yet. Thus, the geometry can have a significant impact
on performance. We have tested the self-shadowing algorithm on three objects: a
simple plane (see Figure 2), a cylinder with 160 vertices (158 triangles) (Figure 4, and
a tessellated BSpline surface (1600 vertices, 3042 triangles) (Figure 5).

The performance for the plane is around 42hz, 36hz for the cylinder and 33hz for
the surface1. The main bottleneck is the copy-to-texture space, but the geometry code

1All timings were taken on a 733mhz PIII using a GeForce based video boards with 32MB of DDR SDRAM

5

paths are causing a performance hit as well.
The results are very encouraging for shadowing from bump maps. There are several

changes to the graphics pipeline that would reduce the number of passes required. The
most significant would be putting the alpha and stencil tests after the blending of frag-
ments with the color already in the frame buffer. This way the frame buffer to texture
memory copy could be eliminated. This would be done by writing the light direction
in tangent space into the alpha channel when the ambient term is written, and then sub-
tracting the contributions from each of the direction passes. This would also eliminate
one rendering pass for the geometry. Having a more flexible vertex shader [3] would
allow the(s, t) texture coordinates to not be computed on the fly and work optimally
with the Transform and Lighting hardware. Also if hardware supported a dependent
texture-read2, the soft shadowing used by Max could be implemented as well.

The most obvious limitation of this method are that it cannot cast bumpy shadows
onto other objects, and other objects cast shadows onto the receiving surface as if it
was not bumped. For future work, it would be interesting to look at other ways of
precomputing self-shadowing. The horizon map is a function over orientation in the
tangent plane, there are other functions that could leverage this parameterization we
are currently investigating applying it to mip-mapping of normal maps - representing
variance as a function of orientation in the tangent plane.

References

1. Nvidia web page. htt://www.nvidia.com.
2. Blinn, J. F. Simulation of wrinkled surfaces.Computer Graphics (Proceedings of SIG-

GRAPH 78) 12, 3 (August 1978), 286–292. Held in Atlanta, Georgia.
3. D.McCool, M., and Heidrich, W. Texture shaders.1999 SIGGRAPH / Eurographics

Workshop on Graphics Hardware (August 1999), 117–126. Held in Los Angeles, California.
4. Heidrich, W., Daubert, K., Kautz, J., and Seidel, H.-P. Illuminating micro geometry

based on precomputed visibility.Proceedings of SIGGRAPH 2000 (July 2000).
5. Heidrich, W., and Seidel, H.-P. Realistic, hardware-accelerated shading and lighting.

Proceedings of SIGGRAPH 99 (August 1999), 171–178. ISBN 0-20148-560-5. Held in Los
Angeles, California.

6. Heidrich, W., Westermann, R., Seidel, H.-P., and Ertl, T. Applications of pixel textures
in visualization and realistic image synthesis.1999 ACM Symposium on Interactive 3D
Graphics (April 1999), 127–134. ISBN 1-58113-082-1.

7. Max, N. L. Horizon mapping: shadows for bump-mapped surfaces.The Visual Computer 4,
2 (July 1988), 109–117.

8. Miller, G. Efficient algorithms for local and global accessibility shading.Proceedings of
SIGGRAPH 94 (July 1994), 319–326. ISBN 0-89791-667-0. Held in Orlando, Florida.

9. Segal, M., Korobkin, C., vanWidenfelt, R., Foran, J., andHaeberli, P.E. Fast shadows
and lighting effects using texture mapping.Computer Graphics (Proceedings of SIGGRAPH
92) 26, 2 (July 1992), 249–252. ISBN 0-201-51585-7. Held in Chicago, Illinois.

10. Williams, L. Casting curved shadows on curved surfaces.Computer Graphics (Proceedings
of SIGGRAPH 78) 12, 3 (August 1978), 270–274. Held in Atlanta, Georgia.

11. Woo, A., Poulin, P., and Fournier, A. A survey of shadow algorithms.IEEE Computer
Graphics & Applications 10, 6 (November 1990), 13–32.

12. Zhang, H. Forward shadow mapping.Eurographics Rendering Workshop 1998 (June 1998),
131–138. ISBN 3-211-83213-0. Held in Vienna, Austria.

2This is available in DX7, but only the Matrox G400 and ATI Rage6 currently supports it

6

Fig. 2. Plane no shadow, dense shadow, light shadow

Fig. 3. Different light angle and more extreme bump height, tough case for 8 directions

Fig. 4. Cylinder no shadows, cylinder dense shadows, cylinder light shadows

Fig. 5. Surface dense shadow, light shadow, different view light shadow

7

