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Figure 1:  Comparison of PRT, and four variants of normal mapping:  Gold Standard, Separable, Half-Life 2 basis, Shifted 
Associated Legendre Polynomials 

 
Abstract 
Normal mapping is a variant of bump mapping that is commonly 
used in computer games.  It models complex surface variations by 
explicitly storing a surface normal in a texture map.  However, it 
has not been used with precomputed radiance transfer (PRT), a 
technique for modeling an object’s response to a parameterized 
model of lighting, which enables interactive rendering of complex 
global illumination effects such as soft shadows and inter-
reflections.  This paper presents several techniques that effectively 
combine normal mapping and precomputed radiance transfer for 
rigid objects.  In particular, it investigates representing the 
convolved radiance function in various bases and borrowing 
concepts from the separable decomposition of BRDF’s. 
Keywords:  Graphics Hardware, Illumination, Normal Mapping, 
Rendering, Shadow Algorithms 

1.  Introduction 
Generating realistic images of complex scenes at interactive rates 
is a challenging problem.  Games traditionally have used a 
combination of static light maps and multiple dynamic point or 
directional light sources.  The surfaces generally are textured with 
both reflectance properties and normal maps [Blinn 1978; Peercy 
et al. 1997] that approximate complex surface details.  These 
textures tend to be sampled at high spatial sampling rates and are 
often layered and tiled to create even higher effective sampling 
rates.  In contrast, precomputed lighting techniques require unique 
representations of a signal and are stored at much lower sampling 
rates.  It is impractical to sample these unique details at the 
effective composite sampling rate. 
A recent technique, precomputed radiance transfer [Sloan et al. 
2002], enables complex global illumination effects like soft 
shadows and inter-reflections to be rendered in real time for rigid 
objects under dynamic distant lighting.  While a technique has 
been proposed to model these higher frequencies [Sloan et al. 
2003b], it is too heavyweight for computer games. 
Normal maps have been successfully integrated with global 
illumination in both off-line production [Tabellion and Lamorlette 
2004] and interactive games [McTaggart 2004] under static global 
lighting.  Inspired by this work, we propose several simple 
techniques that extend diffuse PRT for rigid objects to handle 
normal maps.  They are lightweight, and they only model global 

illumination effects at coarse scales, neglecting fine scale 
shadowing of the surface details. 

2.  Background and Related Work 
Static global illumination and normal mapping have been 
successfully integrated both off-line [Tabellion and Lamorlette 
2004] and in the recent game Half-Life 2 [McTaggart 2004].  Our 
work is heavily influenced by the latter paper, which is effectively 
a vector irradiance formulation of radiosity that makes normal 
mapping effective.  We shall investigate several hemispherical 
bases for representing parameterized global illumination, and 
include a novel basis based on concepts used for representing 
BRDF’s [Kautz and McCool 1999]. 

2.1 Precomputed Radiance Transfer 
PRT [Sloan et al. 2002] enables interactive rendering of complex 
global illumination effects for rigid objects.  For completeness, we 
briefly describe PRT and discuss why previous work does not 
adequately address normal mapping.  In this paper scalar 
quantities and low dimensional vectors are denoted in italics, 
matrices with upper case bold letters and vectors with lower case 
bold letters.  The general mathematical form of PRT is: 

( ) ( )Te v v= b RM l  

Here e(v) is outgoing radiance, b(v) is a vector that represents the 
materials response to lighting in view direction v expressed in a 
local coordinate system; R is a matrix that rotates lighting into the 
local frame; and M is a matrix that maps distant lighting l to 
transferred incident radiance.  For diffuse surfaces, a single 
transfer vector t has been used that directly models the 
relationship between distant lighting and outgoing radiance.  
These spatially varying operators are computed using slightly 
modified off-line global illumination techniques; for details see 
[Sloan et al. 2002;Sloan et al. 2003a;Lehtinen 2004].   
These formulations have fine surface details burned into the 
model of transfer, which precludes their use with normal 
mapping.  One exception to this is the bi-scale radiance transfer 
technique [Sloan et al. 2003b], which, like this work, models 
coarse effects using operators that map from distant lighting to 
smooth incident radiance.  However, in that work the fine scale 
was modeled using a heavyweight representation that modeled 
both masking effects and arbitrary materials.  We represent 
convolved incident radiance with a more compact basis which 
makes our technique much lighter weight, but can only handle 
diffuse materials and does not model shading effects at the fine 
scales of the normal map.  Local, Deformable Precomputed 
Radiance Transfer (LDPRT) [Sloan et al. 2005] models only fine 

 



scale transfer effects for deformable objects, while this work 
models only coarse scale effects for rigid objects. 

2.2 Spherical Harmonics 
Spherical harmonics are the spherical analog of the fourier basis 
on the unit circle and have been used extensively in computer 
graphics.  In this paper they are used to represent both the distant 
lighting environment and the convolved local lighting 
environment.  The general form is: 
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The above definition forms a complex basis; a real-valued basis is 
given by the simple transformation 
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Low values of l (called the band index) represent low-frequency 
basis functions over the sphere.  The basis functions for band l 
reduce to polynomials of order l in x, y, and z. 
Spherical harmonics can only efficiently represent smooth 
lighting environments.  Smooth lighting environments induce low 
spatial sampling rates, making them more practical for 
applications like computer games.  

2.3 Irradiance Environment Maps 
An irradiance environment map [Ramamoorthi and Hanrahan 
2001] enables interactive rendering of diffuse objects under any 
illumination environment without shadowing.  This is done by 
representing the lighting environment and the normalized cosine 
kernel1 directly in spherical harmonics.  Convolution can be 
performed efficiently in this space, and only the first 9 terms of 
the convolved lighting environment are needed to represent it 
accurately.  Irradiance environment maps are used in this paper to 
efficiently decouple normal variation from lighting variation. 

3.  Normal Mapping for PRT 
At any point on the surface of an object a transfer matrix 
represents how distant lighting expressed in some lighting basis 
(spherical harmonics for this work) maps to transferred incident 
radiance.  Even if the object has complex normal variation, this 
incident radiance is a smooth function, while the outgoing or exit 
radiance has much more variation.  Decoupling normal variation 
from incident radiance, makes practical rendering objects with 
complex surface variation.   
The straightforward way to address this for diffuse objects is: 
exploit the observation in other papers [Ramamoorthi  and 
Hanrahan 2001; Basri and Jacobs 2001], and have transfer 
matrices that project into quadratic spherical harmonics followed 
by a convolution with the clamped cosine kernel.  Then, 
interpolate irradiance at some coarse scale, and simply evaluate 

 
1 Irradiance needs to be converted to outgoing radiance to be visualized.  
This can be done by convolving, using a normalized cosine kernel (divide 
by Pi) and keeping the albedo in [0,1]. 

this using a normal, looked up in a normal map.  This can be 
expressed mathematically as follows: 

(3.1)               ( ) ( )Te n n= y CRM l  

Here, e(n) is the outgoing radiance as a function of the surface 
normal n; y(n) is a vector generated by evaluating the quadratic 
spherical harmonic basis functions in the normal direction; C is a 
diagonal matrix that convolves quadratic spherical harmonics with 
the normalized cosine kernel; R is a spherical harmonic rotation 
matrix that rotates a quadratic SH function into the local frame; 
and M is a transfer matrix that maps the varying distant lighting l 
of some order into quadratic local lighting. 
Unfortunately this is still too heavyweight; in particular, 27 
numbers are required to represent the irradiance environment 
map.  If this is computed at the vertices of the mesh, 7 of the 8 
interpolators have to be consumed for this alone.  The rest of this 
paper is focused on dealing with efficient approximations to the 
above expressions. 

3.1 Projection into Hemispherical Basis 
One possible solution that we will briefly discuss here is to simply 
project the irradiance environment map into a hemispherical basis.  
Two obvious choices are the basis used in the paper [McTaggart 
2004], which consist of three clamped linear basis functions and 
the basis used in the paper [Tabellion and Lamorlette 2004] which 
is effectively determined from the local linear spherical harmonic 
lighting coefficients but does not include the DC term2.   
In this paper we investigate using the Half-Life 2 basis.  In the 
GDC presentation, shader code was presented with and without 
clamping values to zero. For PRT, not clamping produced better 
visual results and that is what is used in the paper.  The three basis 
functions are: 
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They are orthogonal when integrated over the hemisphere, and 
can be normalized by scaling by ( )3 2π . 

Another basis choice is the one proposed in Gautron’s paper 
[Gautron 2004]. This is an orthogonal basis generated by applying 
the shifting theorem to the spherical harmonic basis.  These basis 
functions can be expressed based on the Euclidean coordinates of 
a point on the unit hemisphere.  The first four basis functions are: 
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These functions are clearly not polynomials except for the L=0 
basis functions, but can be evaluated efficiently using shaders.  
When z=1 the limit of the functions with z in the denominator 

                                                                 
2 The dominant lighting direction that is referred to in this paper can be 
determined from the linear SH coefficients. However, the cosine term 
would have to be neglected to model the same result (it is later added in 
using the actual surface normal). 



equals 0,  x/sqrt(1-z2) = cos(phi), y/sqrt(1- z2) = sin(phi), and so 
the functions are defined over the complete hemisphere. 
Projection matrices from spherical harmonics for both bases are in 
the appendices. 

3.2 Separable Approximation 
An alternative approach is to use the concepts from separable 
BRDF factorization [Kautz and McCool 1999] to build a minimal 
specialized basis.  Separable approximations have been used with 
PRT to model glossy surfaces [Liu et al. 2004;Wang et al. 2004].  
The lighting is treated the same way, but in this case normal 
variation in tangent space for diffuse surfaces is being modeled 
instead of view variation for arbitrary materials.  As in the glossy 
case, the goal is to reduce the dimensionality of the matrix, 
reducing both the size of the dataset and the amount of 
computation required in the shaders. 
Moving to a directional basis, Equation 3.1 can be re-written as:  

(3.2)                ( ) ( )Te n n= b ACRM l
Where b(n) is a vector of coefficients for bi-linear basis functions 
on the unit square mapped to the hemisphere [Shirley and Chiu 
1997], which has at most 4 non-zero values for a given normal.  
Coefficient aij of the matrix A represents evaluating the quadratic 
spherical harmonic basis function j in normal direction i.  In this 
paper 1024 discrete normal directions are used (32x32 samples on 
the unit square) so this matrix is 1024x9. 
Computing the singular value decomposition [Press et al. 1992] of 
A, factors the matrix into a product of 3 matrices USV, where U is 
a 1024x9 orthogonal matrix, S is a 9x9 diagonal matrix and V is a 
9x9 orthogonal matrix.  Using the first M singular values, 
truncates the matrix U to have M columns and the matrix V M 
rows.  This leaves the final approximation: 

(3.3)                ( ) ( )( )T
m m me n b n= U S V CRM l

The term in parentheses is an M dimensional row vector that is a 
function of the surface normal.  This can be efficiently evaluated 
using texturing hardware by packing the columns of Um into 
individual color channels of a texture, and, if M>4, into multiple 
textures.  In this paper we used M=4, and instead of using a 
texture that computes the hemisphere to unit square mapping (or 
complex shader code), we resample the columns of Um into a 
texture parameterized by an orthographic projection of the normal 
vector (ignoring z in tangent space) which is represented at a 
higher resolution (64x64.)  This texture is then sampled directly. 
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Figure 2:  Accuracy vs. number of singular values 

The figures in the paper use 4 rows, requiring 3 interpolants to be 
passed from the vertex shader to the pixel shader.  If the 
convolution matrix C is absorbed into the matrix A we believe the 
SVD will result in higher accuracy. 

4.  Rendering 
Shading is straightforward using these techniques.  In every 
frame, the transfer matrices at the vertices have to be multiplied 
by the distant lighting environment.  Then the coefficients for the 
correct basis are passed down to the pixel shaders, where the 
current normal is looked up in the normal map and used to 
evaluate the particular basis.  The separable approximation is 
more involved, since the normal dependent textures have to be de-
referenced as well.  The shader code below is the pixel shader 
when M=4. The vertex shader passes down the texture 
coordinates and three registers that contain the basis coefficients.  
There are three textures that are sampled: the normal dependent 
texture, the normal map, and the albedo of the surface. 
float4 StandardSVDPS( VS_OUTPUT_SVD In )  
{  
  float4 RGBColor(0,0,0,1); 
  // sample albedo/normal map 
  float4 vAlbedo = tex2D(AlbedoTex, In.uv);    
  float4 vNormal = tex2D(NormTex, In.uv); 
         
  // sample normal dependent texture 
  float4 vU = tex2D(USampler,vNormal); 
 
  // compute irradiance 
  RGBColor.r = dot(In.cR,vU); 
  RGBColor.g = dot(In.cG,vU); 
  RGBColor.b = dot(In.cB,vU); 
  
  // scale by albedo and return 
  return RGBColor*vAlbedo;         
} 
 
The transfer matrices can be compressed using CPCA [Sloan et al. 
2003a] shifting more of the workload to the GPU, decreasing the 
amount of data and increasing performance. 

5.  Results 
We have implemented all of the techniques in the paper.  Table 1 
presents a synopsis of the results for the two models shown in the 
paper.  The precomputation of the transfer matrices is essentially 
the same as in earlier papers [Sloan et al. 2002; Sloan et al. 
2003b] and projection into either the light specialized separable or 
the analytic basis is a simple matrix multiply. 

Scene #f #v GS Sep SAL HL2 GPUGS GPUSep
Simple 1296 722 233 476 477 480 1040 1327 
Complex 60126 31726 13.7 30 30 30 255 487 

Table 1:  Performance results (fps), GS: Gold Standard, Sep: 
Separable, SAL: Shifted Associated Legendre, HL2: Half-Life 2 
basis, GPUGS: Gold Standard+PCA, GPUSep: Separable+PCA 

Visually all the techniques have reasonable fidelity, the shifted 
associated legendre polynomials subjectively looks the worst.  
Not much time has been spent optimizing the CPCA parameters 
for these datasets; in fact, the examples are all reported with the 
simple parameters of a single cluster and 24 PCA basis vectors.  
All of these examples should require fewer clusters compared to 
what was used in previous work [Sloan et al. 2003a], because the 
transfer matrices represent a signal that has been convolved with a 
normalized cosine lobe and have fewer rows.  All timings are in 



frames per second and were recorded on a 2.2ghz AMD Opteron 
with a nVidia GeForce 6800 graphics card. 
Figure 1 shows a comparison on the complex model between 
conventional PRT and these normal mapping variants.  Note the 
complex details on the side of the object that are completely 
encoded in the normal map. 
Figure 3 shows three normal maps mapped onto the simple object 
rendered with PRT and all these techniques.  Note the differences 
on the “bumpy” object. 

6.  Conclusions 
Normal mapping is a compelling technique that has been used 
with analytic lighting and with static precomputed lighting.  We 
extend these techniques to practical implementations for more 
general precomputed lighting techniques, and investigate a family 
of solutions that trade off cost with accuracy.  Of the three 
techniques presented, the analytic basis used in the paper 
[McTaggart 2004] and the separable basis with a four term 
approximation seem the most promising.  While local transfer is 
neglected with the presented techniques, ideas from ambient 
occlusion can be used to generate a crude approximation.  In 
particular, the product of the lighting environment and the DC 
approximation to the visibility function, when projected into 
spherical harmonics, results in simply scaling the lighting 
environment by this DC term.  This turns out to be a mathematical 
justification for a common ambient occlusion technique. 
In the future it is worth investigating compression of the transfer 
matrices more carefully, and possibly integrating a more 
sophisticated model of local transfer while remaining lightweight 
enough to be practical for game applications.  Also, folding the 
convolution into the A matrix could lead to better results. 
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7.  Appendix: Other Basis Functions 
7.1 Shifted Associated Legendre Polynomials 
The matrix below projects the spherical harmonics into the first 
four shifted associated legendre polynomials in closed form. 

2 60 0 0 0 0 0 0
2 4
0 0 0 0 0 0

2 300 0 0 0 0 0 0
4 8

0 0 0 0 0 0 0

a b
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Where: 
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7.2 Half-Life 2 Basis 
The quadratic spherical harmonics can be projected into this basis 
using the following matrix: 

3 6 1 2 3 30 1 15 3 100 0
4 4 2 4 32 16 32

3 6 1 2 3 30 1 15 3 100 0
4 4 2 4 32 16 32

3 1 2 1 15 3 100 0 0
4 2 2 16 16
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7.3 Numerical Comparison
Below is a table that shows the mean squared error (MSE) 
integrated over the hemisphere when projecting each of the 
quadratic spherical harmonic basis functions into these two bases.  
If the corresponding basis function is in the null space of the 
basis, the MSE equals 0.5, and as shown below basis functions 

2
2Y −  and are in the null space of both basis.  It is also worth 

pointing out that those two basis functions are also in the null 
space of the first four SVD coefficients; the 5

2
2Y

th and 6th coefficients 
are exactly those basis functions. 

 0
0Y  1

1Y −  0
1Y  1

1Y  2
2Y −  1

2Y −  0
2Y  1

2Y  2
2Y  

SAL 0 4.6e-2 0 4.6e-2 5e-1 4.5e-2 3.1e-2 4.5e-2 5e-1
HL2 1.3e-1 0 0 0 5e-1 1.5e-1 3.8e-1 1.5e-1 5e-1
Table 2:  Mean squared error integrated over hemisphere.  SAL: 

Shifted Associated Legendre, HL2: Half-Life 2 basis. 
 



    

    

    
Figure 3:  Simple scene, PRT, Gold Standard, Separable, Half-Life 2, Shifted Associated Legendre Polynomials 
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