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Abstract

High dynamic range (HDR) images are increasingly employed in
games and interactive applications for accurate rendering and illu-
mination. One disadvantage of HDR images is their large data size;
unfortunately, even though solutions have been proposed for future
hardware, commodity graphics hardware today does not provide
any native compression for HDR textures.

In this paper, we perform extensive study of possible methods for
supporting compressed HDR textures on commodity graphics hard-
ware. A desirable solution must be implementable on DX9 gener-
ation hardware, as well as meet the following requirements. First,
the data size should be small and the reconstruction quality must be
good. Second, the decompression must be efficient; in particular,
bilinear/trilinear/anisotropic texture filtering ought to be performed
via native texture hardware instead of custom pixel shader filtering.

We present a solution that optimally meets these requirements.
Our basic idea is to convert a HDR texture to a custom LUVW
space followed by an encoding into a pair of 8-bit DXT textures.
Since DXT format is supported on modern commodity graphics
hardware, our approach has wide applicability. Our compression
ratio is 3:1 for FP16 inputs, allowing applications to store 3 times
the number of HDR texels in the same memory footprint. Our de-
compressor is efficient and can be implemented as a short pixel
program. We leverage existing texturing hardware for fast decom-
pression and native texture filtering, allowing HDR textures to be
utilized just like traditional 8-bit DXT textures. Our reduced data
size has a further advantage: it is even faster than rendering from
uncompressed HDR textures due to our reduced texture memory
access. Given the quality and efficiency, we believe our approach
suitable for games and interactive applications.

Keywords: high dynamic range image, texture compression,
games & GPUs, game programming, graphics hardware, texturing
techniques

1 Introduction

HDR images are gaining popularity in games and interactive appli-
cations, as both sources of illumination and intermediate results in
multi-pass rendering. However, due to their range, HDR images
need to be stored as 16-bit or 32-bit floating point textures, taking
2 to 4 times the amount of storage with respect to traditional 8-bit

textures. This not only causes storage issues on commodity graph-
ics hardware often equipped with limited texture memory, but also
incurs significant performance penalties caused by poorer texture
cache coherence and more memory bandwidth consumption.

Unfortunately, current graphics hardware only supports com-
pression of 8-bit textures, and to our knowledge there exists no
suitable compression technique for floating-point HDR textures on
current generation graphics hardware. This makes the size disparity
even bigger between compressed 8-bit and uncompressed HDR tex-
tures. Recently, various extensions have been proposed for support-
ing compressed HDR textures on graphics hardware [Munkberg
et al. 2006; Roimela et al. 2006]. However, these solutions are not
immediately available, as the proposed extensions are not part of
current (DX9) or even future (DX10) graphics APIs or hardware.

The goal of our paper is to provide a solution that can be im-
plemented on current generation GPUs as well game consoles. For
games and other interactive applications, the solution must satisfy
the following requirements. First, the data size should be small and
the reconstruction quality must be good. Second, the decompres-
sion must be efficient; in particular, bilinear/trilinear/anisotropic
texture filtering ought to be performed via native texture hardware
instead of custom pixel shader filtering.

One possibility is to encode a HDR image into a shared exponent
format, RGBE [Ward 1994], via RGBA8 format on current graph-
ics hardware. However, since it is incorrect to linearly interpolate
exponent values in the A channel, we will have to perform texture
filtering via custom shader code. A similar format employed in the
game developer community is RGBS [Green and McTaggart 2006]
where the A channel is interpreted as a scaling (hence the acronym
S) factor of the RGB channels. Similar to RGBE, this format does
not support direct filtering even though it is used as a render target
only.

In this paper, we perform extensive study and comparison of po-
tential methods for supporting compressed HDR textures on pro-
grammable graphics hardware. Our solution represents an input
HDR image with a pair of DXT5 textures. Since DXT is widely
supported on commodity graphics hardware, our decompressor can
be implemented as a pixel program without any hardware modi-
fication. For HDR RGB textures in 16-bit floating point formats,
we obtain a 3:1 compression ratio, meaning that applications uti-
lizing our technique can store 3 times the amount of HDR textures
with the same amount of memory. This is achieved without ma-
jor perceptual quality degradation, as rendering results using our
technique visually match those rendered from original sources. We
present a novel encoding scheme to allow native DXT texture hard-
ware filtering without the need to simulate trilinear or anisotropic
filtering by fetching multiple samples in a fragment program. Even
more importantly, our technique runs faster than rendering from un-
compressed HDR textures due to reduced texture memory traffic.

Since both desktop and mobile GPUs as well as modern consoles
(e.g. PS3 and XBOX360) all support DXT but not HDR compres-
sion, we believe our technique provides significant benefit for many
graphics applications.



2 Previous Work

HDR Tone Mapping Significant research has been conducted in
converting a HDR image into a LDR one so that it can be displayed
on LDR devices [Li et al. 2005; Goodnight et al. 2003; Reinhard
et al. 2005; Ward and Simmons 2004]. However, these techniques
are mainly designed for dynamic range reduction (i.e. tone map-
ping), a non-reversible process, not for data size reduction while
attempting to preserve original dynamic range.

HDR Encoding and Compression OpenEXR [Industrial
Light & Magic 2003] is a popular format for encoding HDR im-
ages in the film industry. However, it focuses on quality but not
efficient decoding, which is crucial for real-time applications. In
addition to tone mapping, [Li et al. 2005] can also be utilized as
a compression technique; however, its complexity makes GPU im-
plementation infeasible. Utilizing compression standards, [Man-
tiuk et al. 2004] compresses HDR videos via MPEG4 while [Xu
et al. 2005] compresses HDR images via JPEG 2000; due to the
variable-rate nature of MPEG and JPEG, these techniques cannot
be easily implemented on graphics hardware.

GPU Texture Compression Unlike traditional image com-
pression whose main concerns are quality and data size, techniques
for GPU texture compression also needs to take into account speed,
random-accessibility, and implementation feasibility [Beers et al.
1996]. To achieve these goals, a variety of techniques have been
proposed [Strom and Akenine-Moller 2005; Fenney 2003; Beers
et al. 1996; Iourcha et al. 1997]; however, to our knowledge they
are all designed for 8-bit LDR images, and therefore cannot be di-
rectly applied to compress HDR textures.

DXT Compression Since our algorithm builds upon the DXT
(aka S3TC) standard [Iourcha et al. 1997], we provide a brief sum-
mary here for completeness. There exist several variations of DXT,
but in our implementation we only utilize DXT1 (the one offering
highest compression ratio) and DXT5 (twice the data size of DXT1
but with higher quality in alpha channel), so below we only describe
these two.

DXT1 operates on individual 4 × 4 pixel blocks independently.
Each 4 × 4 block is represented by two 16-bit R5G6B5 colors,
and 2 bits per pixel to decide how to interpolate from these two
colors. (In other words, all colors in the block will lie on a line
in the color cube.) If the block is totally opaque, then the 2 bits
provide 4 possible linear interpolations of the two extreme colors.
If the block has some transparent (punch through) pixels, then the
encoding is slightly different. But in our algorithm, we only utilize
the opaque mode. The total DXT1 data size is 64 bits per 4 × 4
pixel block.

DXT5 has an identical color encoding as the opaque mode in
DXT1, plus 64 more bits for encoding the alpha channel. In a simi-
lar linear interpolation mindset, the alpha channels per 4× 4 block
are represented by two 8-bit representative values, and 3 bits per
pixel to decide how to interpolate individual alpha channels. The
total DXT5 data size is 128 bits per 4× 4 pixel block.

3 HDR Encoding and Decoding

Here, we describe how we utilize currently available texture for-
mats and programmable pixel shaders to support compressed HDR
textures. In this section, we concentrate on what we have done, not
why. The whole process of our algorithm is illustrated in Figure 1.
Our design decisions may seem arbitrary in many places; for dis-
cussions and justifications on our detailed design process, please
refer to Section 4.

(RGB to LUVW)

Input HDR

Color Space Conversion

(2 DXT textures)

Fragment Program

Compressed Output

Reconstructed HDR

Range Quantization

DXT Encoding

Figure 1: Overview of our algorithm pipeline. Down arrows indicate en-
coding, while up arrows indicate decoding.

Our encoding is conducted offline on a CPU, and is performed
only once. Given a HDR input, we first convert it from RGB into
our custom LUVW color space where all the high dynamic range
luminance information is concentrated in the L channel only. We
then quantize the LUVW channels so that they can be encoded into
fixed-point DXT channels. Since L is the only channel that contains
HDR information, we allocate more bits for L than UVW. Finally,
we properly map the LUVW channels into the DXT channels to
allow native hardware filtering and efficient decoding. Our decod-
ing process is simple and can be implemented on a GPU via pixel
program.

We describe the detailed process below.

3.1 Color Space Conversion

The goal of this step is to concentrate all the HDR information into
one color channel instead of three. Given a HDR image in floating
point format, we first convert it into our LUVW color space. The
formula is:

L =
√

R2 + G2 + B2

U = R/L

V = G/L

W = B/L (1)

Note that division-by-L concentrates all HDR information into
the L channel. This allows us to spend more bits for L than UVW
in the subsequent process. However, since division-by-L is a non-
linear operation, it is theoretically incorrect to perform native filter-
ing for UVW via texture hardware. Fortunately, we have not found
this to be an issue in practice since most natural HDR images have
smooth-varying L values. See Section 4.1 for detailed discussion.

3.2 Range Quantization

After the color conversion, we proceed to convert the floating-point
LUVW values into a form suitable for DXT compression. Since
DXT supports only fixed point values, we need to find a good
method to represent the original high dynamic range floating-point
as fixed-point ones.

We quantize the channels as follows. First, note that UVW has
low-dynamic range, i.e. their values lie in roughly the same ex-
ponent range. As a result, we only need to preserve their man-
tissa parts, essentially reducing the conversion process into a uni-
form quantization. Second, for the L channel, since it still has high
dynamic range, it is usually not enough to use only one uniform-
quantization interval. As detailed in Section 4.3, we have con-
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Figure 2: Example histogram of the luminance channel for the
memorial scene. The HDR/LDR images indicate L in the range
[t1, tmax]/[tmin, t1].

cluded that two uniform quantization intervals strike the best qual-
ity/storage balance.

Given that we have two uniform quantization intervals, we now
describe how we actually quantize L. We divide the range of lumi-
nance into two zones, [tmin, t1] and [t1, tmax], and quantize them
separately, as shown in Figure 2. We choose t1 so that the total
quantization error of the two zones is minimized. Specifically, t1 is
computed by minimizing the following error function:

E(t1) =
nl (t1)× (t1 − tmin)

2bl
+

nh (t1)× (tmax − t1)

2br
(2)

where nl and nh are the number of luminance pixels falling into
the [tmin, t1] and [t1, tmax] regions, and bl and br are number of
bits used to quantize [tmin, t1] and [t1, tmax]. (Note that both nl

and nh are functions of t1.) This formula is only an approximation
for the true quantization error, but it is much easier to optimize and
we have found it sufficient for our data set. In our implementation,
we use a simple linear search of t1 for optimization.

Notice that we have not described exactly how many bits we use
quantizing LUVW; these will be described below for detailed DXT
encoding.

3.3 DXT Encoding

We now describe how to map the quantized LUVW channels into
the channels of two DXT textures. Our encoding is via DXT5
which offers a 3:1 compression ratio for FP16 RGB inputs. Other
alternatives (such as two DXT1 or DXT1+ DXT5) are discussed in
Section 4.

Below is our encoding; tex0 and tex1 refers to the two DXT5
textures.

tex0.a =

{
L L ∈ [t1, tmax]

0.0 L ∈ [tmin, t1]

tex1.a =

{
1.0 L ∈ [t1, tmax]

L L ∈ [tmin, t1]
tex0.r = U
tex0.g = V
tex0.b = W

(3)

Here are some explanations for this encoding. First, since DXT5
has 5/6/5 bits for rgb channels and 8 bit for alpha channel, we put

L into alpha channel for higher accuracy. Second, if pixels in both
[tmin, t1] and [t1, tmax] are mixed in the same 4×4 block, which
could happen in transition region from low to high intensity zones,
then direct filtering L across the same DXT5 channel would pro-
duce incorrect results. The conditional assignments for tex0.a and
tex1.a avoids this problem by putting L in different zones into dif-
ferent textures.

Claim 3.1 Our encoding shown in Equation 3 allows us to recon-
struct L via the following formula, enabling native hardware filter-
ing with no conditional shader code.

L = tex0.a× (tmax − t1) + tex1.a× (t1 − tmin) + tmin (4)

Proof See Appendix A.

Luminance Residual Note that our encoding in Equation 3 has
unused channels in tex1.rgb. We utilize these channels to further
improve reconstruction quality via luminance residual S, defined
as the difference between the original luminance L and the recon-
structed value L’ via Equation 4:

S = L− L’ (5)

The basic idea is to encode the residuals into tex1.rgb and utilize
them during reconstruction. Note that similar to L, S is also a HDR
quantity. Furthermore, it is a signed value. Similar to L encoding
where we use two quanitization ranges, for S we use three ranges
since we have three available channels in tex1.rgb. We compute the
three zones [Smin, S1], [S1, S2], and [S2, Smax] via an optimiza-
tion procedural similar to Equation 2. From this, we encode S as
follows: (analogous to dividing L into two zones and encode via
Equation 3)

tex1.r =

{
S S ∈ [Smin, S1]

1.0 otherwise

tex1.g =

⎧⎪⎪⎨
⎪⎪⎩

0.0 S ∈ [Smin, S1]

S S ∈ [S1, S2]

1.0 S ∈ [S2, Smax]

tex1.b =

{
S S ∈ [S2, Smax]

0.0 otherwise
(6)

The encoded residual values allow us to obtain higher quality
reconstruction than Equation 4 via the following formula:

L = tex0.a× (tmax − t1) + tex1.a× (t1 − tmin) + tmin

+ tex1.r× (S1 − Smin) + tex1.g× (S2 − S1)

+ tex1.b× (Smax − S2) + Smin (7)

(Note the first line is the same as Equation 4.) Via a similar proof
to Claim 3.1, we could claim that this formula allows native filter-
ing without conditional code as well. Residual provides superior
reconstruction quality as demonstrated in Figure 3.

3.4 Decoding in Pixel Shader

Rendering from our compressed HDR images is as follows. For
each texel request, we first fetch the corresponding values from the
two DXT textures; note that the DXT decompression and filter-
ing is performed by the hardware automatically. Because we read



Figure 3: Reconstruction quality comparison with and without residual.
Left: without residual via Equation 4. Right: with residual via Equation 7.
Notice the severe banding artifacts on the left image.

from two textures for each input request, we implement our decod-
ing as a simple pixel shader subroutine. Specifically, we compute
L via Equation 7, and UVW from tex0.rgb (see Equation 3). The
LUVW image is then converted into the final RGB image by invert-
ing Equation 1:

R = U × L

G = V × L

B = W × L (8)

Note that Equation 8 can be performed very efficiently via a
float3 multiplication in our pixel shader, as shown in Table 1.

sampler2D tex0; sampler2D tex1;
const float g LMinPlusRMin;
const float2 g LRangeLowHigh;
const float3 g RRangeLowMidHigh;

float4 Decode BPP16 LUVW( float2 texCoord : TEXCOORD0 ) : COLOR
{

float4 t0 = tex2D( tex0, texCoord );
float4 t1 = tex2D( tex1, texCoord );
float L = t0.a * g LRangeLowHigh.y + t1.a * g LRangeLowHigh.x

+ g LMinPlusRMin + dot(t1.rgb, g RRangeLowMidHigh);
return float4(t0.rgb * L, 1.0f);

}

Table 1: Our pixel shader in HLSL for decompression. Blue indicates
keywords while magenta indicates constants. This shader takes 6 virtual
machine cycles to execute.

3.5 Codec

General DXT encoders like NvDXT or ATI-Compressonator are
not suitable for us since our channels contain information other
than RGB as in traditional images. In particular, numerical opti-
mizations in existing codecs cannot guarantee the best quality when
dealing with L and luminance residuals S. To remedy this issue, we
provide a customized codec as detailed below.

L and S have unique attributes compared to general RGB values.
First, both of them are in high dynamic range, incurring different
perceptual errors than ordinary LDR color channels. Second, even
though S is split into three channels in our encoding (tex1.rgb as
in Equation 6) it is inherently a 1D quantity rather than 3D. We
customize our codec to address these two specific issues.

High dynamic range Psychophysical literature has long demon-
strated that human-eyes are more sensitive to relative differ-
ence in the log domain for high dynamic range quantities.

General DXT encoders do not capture this property as they
usually use the linear difference between the original L/S and
the encoded values L’/S’. To take into account this logarith-
mic effect, we instead use the following error metrics EL and
ES for L and S in our codec:

EL =
|L - L’|
L + c

ES =
|S - S’|
L + c

(9)

where c is a positive constant in case L is zero.

1D quantity split in three channels Since the luminance residual
is split into tex1.rgb, general DXT encoders will naturally
treat them as 3D values, leading to misjudgment because they
are actually 1D values. For example, a general encoder may
think (0.5, 0, 0) and (0, 0, 0.5) are far from each other in 3D.
However, after converting back to 1D values via Equation 7,
the two values can be quite close to each other if (S1-Smin)
≈ (Smax-S2).) To avoid this problem, we perform iterative
optimization for finding proper palette colors in the original
1D space instead of 3D as in other codecs, and only split up
the 1D value into 565 RGB channels in the final step.

4 Design Process

Supporting compressed HDR textures on currently available graph-
ics hardware is essentially a constrained design and optimization
problem, and can be stated as follows. Given an input HDR im-
age, represent it as a combination of textures and pixel shaders on
current generation (DX9) hardware. The representation must have
small data size, and must satisfy the following three requirements:
(1) high reconstruction quality (measured on filtered results in ad-
dition to original pixel samples), (2) fast decoding via shader pro-
gram, and (3) native filtering in texture hardware.

In the following, we describe the reasoning and experimental
process that lead to our final design. We believe it is important to
expose this process rather than simply presenting our final decision
in order to justify that it is not a random choice, from both a theoret-
ical and experimental point of view. Readers who would just like
to implement our algorithm without going through this laborious
discussion could skip this section.

4.1 Color Space Conversion

Color space conversion is a common choice for compression algo-
rithms. In particular, both [Munkberg et al. 2006; Roimela et al.
2006] concentrate HDR information into one luminance channel
for easy processing.

The choices we have are (×/
√

indicates bad/good options):

× no conversion
× standard YCbCr (and other similar color spaces)
× LUV as in [Roimela et al. 2006]

L = R + 2G + B

U = R/L

V = 2G/L (10)
√

our LUVW as in Equation 1

Since it is much harder to compress three HDR channels than
one, we eliminate the no conversion option. Standard YCbCr (and
other color spaces) require a matrix multiplication which is too
computationally expensive for our decompressor shader code, so
we eliminate that as well.

Among the remaining two options, LUVW may seem unusual at
first glance, but it has the following advantages. First, the inverse



conversion can be performed via a simple float3 multiplication on
GPU as via Equation 8, so it is more efficient than LUV. Second,
LUV would leave tex1.b channel unused which is utilized by the
W channel in LUVW. Consequently, LUVW provides better recon-
struction quality than LUV both visually and statistically (Table 2).

Division-by-L issue Due to division-by-L as shown in Equa-
tion 1, it is theoretically incorrect to perform native filtering for the
UVW channels via texture hardware. However, despite this the-
oretical error, our scheme still produces much better quality than
simply encoding UVW in the original HDR range without division-
by-L due to limited quantization bits. Furthermore, we have found
out that this non-linear filtering error unnoticeable for the data sets
we have tried, which include real-world light probes and shipping
game assets from Half-Life 2. This could be mainly attributed to
the fact that L is smooth for natural images; see Appendix B for a
detailed analysis.

4.2 Texture Format

For HDR encoding, we have to choose an available texture for-
mat. A variety of possibilities exist, such as putting L in one FP16
texture followed by downsampling UVW into an 8-bit texture (20
bpp). The decision primarily depends on properties of the input we
use. We have observed that, similar to their 8-bit LDR counterparts,
HDR images also possess a local linear property that fits the under-
lying assumption of DXT compression. In addition, DXT provides
the highest data reduction among currently available formats. As a
consequence, we choose DXT as our base representation.

Note that there are multiple variations of DXT (DXT1-5); below
we enumerate possible options and discuss how we choose among
them.

× two DXT1 (8 bpp)
× one DXT5 (8 bpp)
× one DXT1 + one DXT5 (12 bpp)
× four DXT1 (16 bpp)√

two DXT5 (16 bpp)

The above list is constructed as follows. Since a FP16 RGB tex-
ture has 48bpp, we would like to use at most two DXT5 textures
(16 bpp) to provide enough data reduction. Since we do not use
pre-multiplied alpha, using DXT2 is equivalent to DXT3 (as well
DXT4/5). Between DXT3 and DXT5, we have found that the in-
dexed alpha mode (8-bit palette and 3-bit index) in DXT5 provides
higher quality than the direct alpha mode in DXT3 (4-bit direct).

Also, as discussed in Section 4.3, we need two 8-bit alpha chan-
nels. This leaves us only the option of two DXT5.

4.3 Luminance Range Quantization

Essentially, we are using multiple uniform-quantization ranges to
represent a HDR floating point value. The options we have are:

× 1 range√
2 ranges

× 3+ ranges

Since most HDR images have a luminance histogram similar to
the one in Figure 2, one uniform-quantization range is certainly not
enough, as it would under-sample small values which constitute the
bulk of the histogram. So 1-range option is out.

Using three or more ranges would be infeasible for DXT channel
allocation; since two DXT5 can provide at most two alpha channels,
we will have to encode one range in one of the RGB channels. This

1×12-bit Original 2×6-bit

Figure 4: Uniform quantization effects. Notice that even with the same
number of bits, 2×6-bit quantization is preserves the original dynamic range
better than 1×12-bit quantization.

will cause two problems. First, each of the individual RGB chan-
nels has fewer bits (5/6/5) than an alpha channel (8 bit), resulting
in more quantization error. Even though this could be overcome
by combining multiple RGB channels, the quality is still hampered
by a second issue where DXT only provides 2 interpolation bits for
RGB versus 3 bits for alpha. In our experiments, we have found
that using a single 8-bit alpha actually provides higher quality than
combining multiple RGB channels.

So the only option left is two quantization ranges. Since many
natural HDR images have a histogram similar to Figure 2, two
ranges work really well as the LDR hump and HDR flat region are
covered in different zones.

Figure 4 illustrates the effect of number of quantization ranges.
Notice that 2-range produces much better result than 1-range, even
though both use the same total number of bits.

4.4 Residual Computation

In addition to residual S defined in Equation 5, we have also exper-
imented with an alternative measurement termed residual ratio T,
which is a normalized version of S:

T = S/L’ (11)
√

residual
× residual ratio

In theory, residual-ratio T is in LDR and therefore could be
coded more efficiently than residual S (in a reason similar to why
we choose UVW over RGB). In our experiments we have con-
firmed this by observing that T indeed outperforms S at integer
pixel locations (although only slightly). However, at non-integer
pixel locations whose values are computed by linear interpolation
(i.e. bilinear or trilinear texture filtering) we have found that T intro-
duces excessive artifacts due to its non-linear nature. Specifically, it
may appear self-contradictory that this artifact is only problematic
for T but tolerable for UVW, which are computed from RGB via
dividing-by-L (Equation 1). However, S and RGB possess very dif-
ferent statistical properties. As detailed in Appendix B, RGB color
channels in general go in the same direction as L while the residual
S, being a difference between L and L’, often does not satisfy this
condition. (For the data set used in this paper, the satisfaction rates
are 97.5% for RGB pixel pairs but only 76.1% for S.)

For these reasons, we select residual over residual ratio as our fi-
nal choice for implementation. A comparison is shown in Figure 5.

5 Results and Discussion

We have applied our technique to a variety of HDR inputs; several
representative cases are shown in Figure 8, with the correspond-
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Figure 5: Comparison of filtering effects for residual and residual-ratio.
Notice the severe filtering artifact for residual ratio.
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Figure 6: HDR images used in our experiments.

ing statistics in Table 2. In addition to ground truth, we have also
compared our technique with two alternative techniques commonly
employed by game developers:

FP16×4 Each RGBA channel is encoded in 16-bit IEEE floating
point. The advantage of this format is that hardware filtering
is supported, plus it can be used not only for input texture but
also for render target. The disadvantage is that it consumes
more storage and bandwidth than our encoding.

RGBE This has the same storage size as RGBA8, but the alpha
channel is used as a shared exponent for all the RGB chan-
nels. The advantage of this format is that it is more com-
pact than FP16×4 (but still 2 times the size of our encoding).
In addition, it requires custom filtering on current GPU since
the shared exponent cannot be linearly interpolated. (A varia-
tion of this RGBE format will be supported on DX10 [Blythe
2006].)

For real-time GPU applications, we are mostly concerned with
three criteria: size (bits-per-pixel), quality (PSNR), and speed
(frame-per-second).

The data size can be easily measured by bits-per-pixel, and we
measure quality via PSNR via the metric in [Li et al. 2005]; how-
ever, unlike [Li et al. 2005] where the formula is only applied on
the L channel, we measured errors across all color channels so both
luminance and chrominance errors are considered. We measure per-
formance speed via a teapot scene in Figure 7 which renders a sin-
gle HDR source twice: once for environment map and another once
for the teapot reflection map. We choose this simple teapot scene
so that the performance bottleneck would come from shader/texture
instead of geometry/rasterization.

As shown in Table 2, our technique consumes the minimum stor-
age and runs fastest; indicating that the GPU is memory bound un-
der this circumstance. Note that even though RGBE has smaller
data size than FP16, it is actually slower due to the need of shader
simulation for trilinear filtering.

LUV LUVW RGBE FP16×4
Bits per pixel 16 16 32 64
Speed (fps) 476 482 297 366

Scene PSNR PSNR PSNR PSNR
beach cross 64 69 68 inf

bigfog 64 66 69 95
building cross 54 58 68 123
campus cross 71 74 70 127
galileo cross 69 70 74 132
game beach 54 57 67 96
game indoor 51 54 63 93
grace cross 74 75 64 133

kitchen cross 67 68 74 127
lounge 57 61 66 inf

memorial 64 65 77 inf
rnl cross 68 70 72 129

stpeters cross 74 76 77 133
synagogue 44 48 57 84
uffizi cross 56 63 70 108

average PSNR 62 65 69 115
average PSNR
bits per pixel 3.9 4.1 2.2 1.8

Table 2: Comparison of various algorithms. The top two rows list the data
size (in bits-per-pixel) and rendering speed (in trilinear filtering mode for the
scene in Figure 7); note that for RGBE8 the trilinear filtering is simulated
in shader. The bottom rows demonstrate PSNR (peak-signal-to-noise ratio)
across various inputs. The PSNR = inf cases indicate perfect reconstruction
(which are ignored during average PSNR computation). All source image
thumb nails can be found in Figure 6.

Figure 7 serves an additional purpose: since users usually see
only the final rendering, not the source texture, it is more important
to assess the perceptual quality on rendered images [Beers et al.
1996]; we utilize the smooth but curved teapot surface to achieve
this goal. As shown, our result is visually indistinguishable from
the result generated by FP16. In addition, our result achieves the
best compression ratio, measured as quality/data-size (last row in
Table 2).

6 Conclusions and Future Work

Despite proposals for future hardware design [Munkberg et al.
2006; Roimela et al. 2006], current generation GPUs do not pro-
vide adequate support for compressed HDR textures. We provide a
solution to address this issue. Our algorithm can be implemented on
DX9 graphics hardware, has high reconstruction quality, and runs

FP16 Our LUVW

Figure 7: Rendering from HDR environment map. All renderings are
performed with trilinear filtering on an NVIDIA Geforce 6800 card.



efficiently due to a simple and fast pixel shader and native hard-
ware texture filtering. Our compression ratio is 3:1; even though
lower than that offered by novel hardware [Munkberg et al. 2006;
Roimela et al. 2006], this still offers a significant boost for games
and interactive applications which are often texture intensive. Fi-
nally, supporting HDR on DX9 GPUs can be considered a con-
strained design and optimization problem; we expose our decision
process to demonstrate how we have come up with our final design.

For future work, we plan to extend our algorithm to alternative
texture formats available in DX10 and XBOX360. In particular,
DX10 and XBOX360 both support textures that are two DXT5 al-
pha blocks (8bpp) and DX10 has a format that is a single channel
DXT5 alpha block (4bpp). (Such as the ATI2N and ATI1N formats
already shipped by ATI.) For the former format, we could store L
via two DXT5 alpha blocks and then down-sample UVW into quar-
ter resolution and store them via a single LDR DXT1 texture (9bpp
in total). This single channel format could be used to store tex1.a
as in Equation 3; this encoding does not have a residual, but saves
4bpp.
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reviewers for their comments.

A Proof for Claim 3.1

Proof Let the L channel have an original value of t, then due to
uniform quantization we have:

tex0.a =
t− tmin

t1 − tmin
, tex1.a = 0, if t ∈ [tmin, t1] (12)

tex1.a =
t− t1

tmax − t1
, tex0.a = 1, if t ∈ [t1, tmax] (13)

From Equation 12 and 13, we can derive the reconstruction for-
mula as follows:

t = tex0.a× (t1 − tmin) + tmin, if t ∈ [tmin, t1] (14)
t = tex1.a× (tmax − t1) + t1, if t ∈ [t1, tmax] (15)

We now show that our encoding in Equation 3 would allow
us perfect reconstruction via this equation, without any condi-
tional code. If t lies in [tmin, t1], we have tex1.a = 0, so t =
tex0.a × (t1 − tmin) + tmin, which is the same as the Equa-
tion 14. Otherwise, t lies in [t1, tmax], and we have tex0.a = 1,
so t = tex1.a×(tmax− t1)+ t1, which is the same as Equation 15.
Thus our encoding satisfies requirement 4 for no conditional code.

Furthermore, due to the commutability of linear operations, it
is easy to show that (1) performing reconstruction via Equation 4
followed by trilinear interpolation is equivalent to (2) performing
trilinear interpolation of tex0.a/tex1.a values followed by recon-
struction via Equation 4. Since in (2) the trilinear interpolation of
tex0.a/tex1.a can be accomplished in texturing hardware, our en-
coding satisfies the native filtering requirement.

B Interpolation error for division-by-L

Let two adjacent pixels have scalar HDR values P1 and P2, and
their LDR values (after dividing by L) be Q1 = P1

L1
and Q2 = P2

L2
.

For example, in RGB to LUVW color conversion (Equation 1) we
have P = RGB and Q = UVW, and in residual to redisual-ratio
conversion (Equation 11) we have P = S and Q = T .

For any pixel P in between P1 and P2 we can compute its value
via linear interpolation

P = αP1 + (1− α)P2 (16)

However, since in our hardware decoding scheme we interpolate
Q and L instead of P , we have

Q′ = αQ1 + (1− α)Q2

L′ = αL1 + (1− α)L2

P ′ = Q′L′ (17)

Taking the squared differences of P and P ′, we have

(
P − P ′)2

=
(
α(1− α)

[
P1(

L2

L1
− 1) + P2(

L1

L2
− 1)

])2

(18)

It can be easily proven that this interpolation error is small when
(1) L1 ≈ L2 or (2) P and L are “going in the same direction” (i.e.
both increasing/decreasing). In our experiments, we have found
that both conditions are true for RGB color space so division-by-L
does not introduce noticeable filtering artifacts (Equation 1). How-
ever, for residual S, since it is the difference between L and L’, it
in general does not satisfy condition 2. As a result, we have found
that residual ratio T (Equation 11) has more severe interpolation
artifacts than UVW.
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Figure 8: HDR compression results. For each group of images, the top row shows the original while the bottom row shows our reconstruction. We show
different exposures of the same HDR image for comparison.


