
Fast Scan Algorithms on Graphics Processors

Yuri Dotsenko Naga K. Govindaraju Peter-Pike Sloan Charles Boyd John Manferdelli

Microsoft Corporation
One Microsoft Way

Redmond, WA 98052, USA

{yurido, nagag, ppsloan, chasb, jmanfer}@microsoft.com

ABSTRACT

Scan and segmented scan are important data-parallel primitives

for a wide range of applications. We present fast, work-efficient

algorithms for these primitives on graphics processing units

(GPUs). We use novel data representations that map well to the

GPU architecture. Our algorithms exploit shared memory to

improve memory performance. We further improve the

performance of our algorithms by eliminating shared-memory

bank conflicts and reducing the overheads in prior shared-memory

GPU algorithms. Furthermore, our algorithms are designed to

work well on general data sets, including segmented arrays with

arbitrary segment lengths. We also present optimizations to

improve the performance of segmented scans based on the

segment lengths. We implemented our algorithms on a PC with an

NVIDIA GeForce 8800 GPU and compared our results with prior

GPU-based algorithms. Our results indicate up to 10x higher

performance over prior algorithms on input sequences with

millions of elements.

Categories and Subject Descriptors

D.1.3 [Concurrent Programming]: Parallel programming.

General Terms

Algorithms, performance.

Keywords

Scan, all-prefix-sum, segmented scan, GPGPU, GPU, parallel

algorithm, HPC, many-core.

1. INTRODUCTION
Graphics processing units (GPUs) are programmable processors

with high memory bandwidth and high parallelism. They are

mainly designed for gaming applications. With the introduction of

new features such as atomic and scatter operations, and shared

register files, several data parallel algorithms such as quicksort [6]

can be mapped to GPUs. The basic building blocks in many of

these data-parallel algorithms are scan primitives, and several

scan algorithms have been designed for parallel processors [4][7].

Recently, many scan algorithms have been implemented for GPUs

[11][13][5][6][15]. These algorithms exploit the high memory

bandwidth and massive parallelism on GPUs. The current state-

of-the-art GPU-based algorithms also exploit shared memory to

improve the performance of scans. In this paper, we analyze the

issues in mapping scan algorithms to the GPU architecture. We

highlight that the prior algorithms deliver suboptimal performance

due to high overhead of shared-memory bank conflicts,

synchronization, and index arithmetic.

We present fast scan algorithms that map better to GPUs and

achieve higher performance than prior GPU-based algorithms.

Our main contribution is a novel data representation in shared and

global memory that maps better to the GPU memory hierarchy

and the scan algorithms. Accesses to the data representation

involve no bank conflicts in the shared memory while exploiting

the high parallelism on GPUs. Our algorithm involves low

overhead compared to prior approaches and the performance of

the kernel scales better with shared memory sizes.

We implemented our algorithms on a PC with a modern NVIDIA

GPU. We benchmark our algorithms against prior state-of-the-art

GPU-based algorithms on several GPUs. Our results on

unsegmented scans indicate up to 60% higher performance than

prior optimized algorithms. On segmented scans, we observed up

to an order of magnitude higher performance over optimized

GPU-based segmented scan algorithms.

Organization of the paper: The rest of the paper is organized as

follows. In Section 2, we present the related work. In Section 3,

we give an overview of scan algorithms and the issues in mapping

them to GPUs. We present our scan algorithms and provide

analysis in Section 4. In Section 5, we describe our experimental

results. We summarize the paper and present future work in

Section 6.

2. RELATED WORK
Scan primitive was introduced by Iverson in APL [1]. Blelloch

provides extensive overview of scans as building blocks of

parallel algorithms and formalizes scan for the PRAM model [4].

Blelloch presented several applications of the scan algorithm such

as radix sort [17], sparse matrix vector multiply [16], etc. These

algorithms may not map directly to GPUs due to complexities of

modern GPU architectures such as memory bank conflicts.

Horn [11] presented the first GPU-based scan algorithm used in

the context of non-uniform stream compaction. Horn’s

implementation utilized graphics programming APIs and used the

streaming model for the scan operation. Hensley et al. [12]

improved the performance of scan primitives for computing

summed area tables. Although these algorithms map well to

GPUs, they are not work-efficient. Using graphics programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ICS’08, June 7–12, 2008, Island of Kos, Aegean Sea, Greece.

Copyright 2008 ACM 978-1-60558-158-3/08/06...$5.00.

205

APIs, Sengupta et al. [13] and Greβ et al. [18] presented work-

efficient scan-based algorithms.

More recently, Harris et al. [5] and Sengupta et al. [6] presented

implementations of work-efficient scan and segmented scan

primitives, respectively, on NVIDIA GPUs using the CUDA

programming API. Their algorithms extend the algorithms

proposed by Blelloch [4] to GPUs. Both of these algorithms

exploit shared memory on GPUs to achieve higher performance

than prior algorithms. However, these algorithms involve bank

conflicts and their kernels may not scale well with shared memory

size resulting in suboptimal performance.

Chatterjee et al. [7] use a 2D matrix to decompose the input vector

into chunks small enough to fit inside a vector register of Cray Y-

MP architecture [14]. More generally, Blelloch et al. [19] use loop

raking to solve linear recurrences on vector architectures. Our

algorithm is similar to these approaches. As we use a shared

register file on the GPUs, our mapping accounts for memory bank

conflicts and overheads of index arithmetic and synchronization.

Moreover, we generalize their representation to a multi-

dimensional matrix representation that maps better to the memory

hierarchy on GPUs.

3. OVERVIEW OF GPUS AND SCAN

PRIMITIVES
In this section, we provide a brief overview of scans and the GPU

programming model. We highlight some of the main issues in

mapping the prior algorithms to GPUs.

3.1 Scans
The scan primitive [1] operates on a monoid with an

associative binary operation : × and a left identity

element ε , such that a , ε a = a. Given an input

sequence A=[a0, …, an-1] of n elements, the exclusive scan

primitive transforms A into output sequence B=[b0, ..., bn-1] such

that [b0, ..., bn-1]=[ε , a0, a0 a1, …, a0 … an-2]. The

inclusive scan primitive transforms A into [a0, a0 a1, …, a0 …

 an-2 an-1]. In this work, we focus on exclusive scans, noting

that the ideas can be trivially extended to handle inclusive scans.

The described primitives are forward scans. The backward scan

primitives are similar to the equivalent forward scans, but traverse

the input sequence in reverse direction. The exclusive backward

scan transforms A into C=[ε , an-1, an-1 an-2, …, an-1 … a1].

Examples of binary operations used in scans include addition,

multiplication, minimum, and maximum operations. These binary

operations work on floating point or integer operands. The

identities used in scans are 0, 1, + , - , respectively. In this

paper, the exact operation and data types have no difference on

our algorithm, so we use + as the operation of choice in the rest of

the paper and refer to this scan primitive as +-scan. An example of

the +-scan application on an input array A is given below. The

output arrays for forward and backward scans are shown in B and

C, respectively

A = [1, 7,-4, 2, 2,-1, 5] // input

B = [0, 1, 8, 4, 6, 8, 7] // exclusive, forward

C = [0, 5, 4, 6, 8, 4, 11] // exclusive, backward

The scan primitive operates on the entire sequence. In practice,

many applications need to scan several sequences. Rather than

executing several independent scans, one for each input sequence,

it has been a common practice to use the segmented scan

primitive [2]. The input sequences, called segments, are stored

together, one after another, in one input vector. To scan these

sequences simultaneously, the segmented scan primitive needs an

additional input – a vector that enables scan to identify original

subsequences. For instance, this information can be conveyed by a

vector of head-flags where a set flag denotes the first element of a

new segment. Similar to scans, the segmented scan primitives can

be exclusive and inclusive as well as forward and backward. We

focus on exclusive forward and backward segmented scans. If

segments are identified via head-flags, the backward segmented

scan must treat set flags as the segment end flags. An example of

the segmented +-scan application is shown below:

A = [1, 7,-4, 2, 2,-1, 5] // input

Flags = [1, 0, 1, 1, 0, 0, 0] // head-flags

B = [0, 1, 0, 0, 2, 4, 3] // exclusive, forward

C = [0, 5, 4, 6, 0, 0, 7] // exclusive, backward

3.2 GPU Programming Model and Scans
GPUs consist of a number of multiprocessors, each of which can

execute the same program on each element of a data set. For

optimal performance, the data set is typically decomposed into

fixed-size blocks that can each be assigned to a multiprocessor

core. Each multiprocessor processes the fixed-size blocks by

executing on a small subset of the data elements in a block

simultaneously. Multiprocessor context switches between subsets

of data elements are inexpensive compared to CPU threads. By

switching the multiprocessor to a different subset of data

elements, pipeline stalls due to data hazards and memory latency

to the DRAM can be effectively hidden. We refer to a group of

threads executed in SIMD fashion as a warp.

Recent GPUs such as the NVIDIA G80 have a shared memory or

register file with synchronization primitives to enable

communication between threads running on the same thread

block. The shared register file typically consists of several

memory banks that can be accessed simultaneously by threads of

a warp. The accesses to shared register file are similar to local

register accesses except when the memory accesses involve

register bank conflicts. A conflict occurs when several threads

access the same shared memory bank; in which case, the accesses

are serialized and their latency increases, resulting in degraded

performance.

The performance of GPU memory subsystem depends on memory

access patterns. The best performance is achieved when memory

accesses are coalesced; i.e., k consecutive threads of a warp

reference k properly aligned contiguous elements of the same size.

Scan primitives can be efficiently implemented by exploiting the

large number of threads on GPUs and using shared memory to

reduce the latency of memory accesses. Many of the current GPU-

based algorithms [5][6] use a traditional binary-tree-based

algorithm to improve the performance of scans.

206

The binary-tree-based scan algorithm proceeds in log n stages. In

each stage, the binary operator is applied to two distinct elements

in the input array and the output is stored into a new array as

shown in Figure 1, where different shading denotes elements

accesses by threads of the same warp. In order to further improve

the performance, Harris et al. [5] proposed the fast-scan

algorithm. The fast-scan algorithm decomposes the input array

into blocks of size B that fit in the shared memory and performs

scan on the decomposed blocks. The scan on the entire sequence

is then implemented using a recursive multi-block scan.

In order to utilize the high parallelism on GPUs, the fast-scan

algorithm performs an efficient mapping of the threads on the

multi-processors to the elements in the stages of the binary tree. In

each stage, a thread operates on two distinct elements and the

output is written to a shared-memory location. The fast-scan

algorithm also uses a padding scheme, based on the number of

shared memory banks, to improve performance of logical accesses

to shared-memory locations. The additional padding reduces bank

conflicts in accessing the elements in shared memory. The

resulting algorithm is fast and achieves significantly higher

performance than prior GPU-based unsegmented scan algorithms.

Sengupta et al. [6] proposed segmented scan algorithms which use

a tree-based technique, similar to those of the fast-scan, for arrays

with multiple segments. Although the algorithms are fast, their

mappings on GPUs have several issues:

 Global memory accesses: The fast-scan algorithm writes the

results of intermediate scans in shared memory to the global

memory. While this reduces the computation, it has a higher

global memory overhead than necessary in a streaming

architecture.

 Shared memory accesses: The padding scheme in fast-scan

eliminates the bank-conflicts in the first few stages.

However, the fast-scan algorithm has high-degree bank

conflicts in the higher stages whenever B>numbanks2, where

B is size of the block being scanned. This is mainly because

the stride for memory accesses in the higher-stages becomes

a multiple of the number of shared memory banks. This may

limit the performance and scalability if shared memory size

increases faster than the number of banks in future

architectures. In addition, the padding scheme recomputes

element indices for each level of the tree per thread warp

active on the level, introducing additional overheads; thus,

the overheads increase with the number of threads.

 Synchronization between stages: In order to communicate

between threads across stages, intermediate values after a

stage is complete are written to shared memory and threads

are synchronized before beginning the next stage. Using a

binary-tree based algorithm, O(log n) synchronizations are

required. The synchronization operations in the algorithm

can be expensive as the number of threads increase.

In this paper, we address these problems using a memory-efficient

algorithm that achieves better performance than prior GPU-based

scan algorithms.

4. SCAN ALGORITHMS
In this section, we present our algorithms for unsegmented and

segmented scans. We later extend our algorithms to handle

backward scans. We present an analytical analysis of our

algorithms.

4.1 Unsegmented Scan
Given an array A0 of size N, we decompose the array into blocks

of size B that fit in shared memory. We reduce the elements in

each block and store the result of the reduction into a new, smaller

array A1 of size N/B . We recursively invoke the scan operation

on A1. We stop the recursion when the size of the input array to

scan is no greater than B. We then perform a scan operation on A1

and store the result in A1. Finally, we perform a scan operation on

each block Bi of A0 and combine the element A1[i] with elements

in block Bi. We store the result in A0, which is the scan of array

A0. This is schematically shown for two levels in Figure 2. Each

level of recursion involves synchronization1 to ensure that the

next stage uses proper values produced on the prior stage. We can

abstract the array A0 as a BxBx…xB matrix, and the recursive

invocation as the application of our algorithm to each dimension

in the matrix.

We refer to our algorithm as MatrixScan. The main component of

MatrixScan that is crucial for achieving high performance is the

GPU kernel shown in Figure 4 to scan a block efficiently. The

reduction kernel and the recursion logic are rather obvious and

omitted from the discussion. Our algorithm generalizes the

binary-tree based scan algorithm proposed by Blelloch [4] for

vector architectures and maps it efficiently to the memory

hierarchy on recent GPUs. Both the reduction and scan operations

1 On today’s GPUs, the commands to execute each level of the

multi-block scan recursion are issued from the host; thus, the

synchronization between the levels is implicit.

X0 X1 X2 X3 X4 X5 X6 X7

X0 X0..1 X2 X2..3 X4 X4..5 X6 X6..7

X0 X0..1 X2 X0..3 X4 X4..5 X6 X4..7

X0 X0..1 X2 X0..3 X4 X4..5 X6 X0..7

Figure 1. Tree-based reduction of an 8-element sequence.

Reduce Block 0 Reduce Block 1 Reduce Block 2 Reduce Block 3

 Input Sequence

Scan helper array

Scan Block 0 Scan Block 1 Scan Block 2 Scan Block 3

 Output Sequence

Store reduction result for
block to helper array

Figure 2. Two-level recursive scan for four blocks.

207

on the blocks of an array can be performed in shared memory.

Our shared memory algorithm is very similar to our multi-block

scan algorithm. We arrange the block in the shared memory as a

2D matrix with dimensions W×H, as shown in Figure 3.

Our shared memory algorithm proceeds in three steps, as shown

in Figure 4. First, H threads work in parallel; each thread

sequentially reduces the row corresponding to the thread ID in the

matrix and stores the result into the auxiliary array column. We

then synchronize the threads to ensure that the values are written

to the auxiliary array. The second step scans column using

several threads for best performance; this produces scan results pr

of subsequences preceding each row r. Third, H threads work in

parallel; each sequentially scans the corresponding row,

initializing the running scan result res to pr, thus propagating pr

across r.

We pad W such that the row length of the matrix is prime relative

to num_banks in the shared memory. Our choice of row length

ensures that there are no bank-conflicts while accessing shared

memory. Furthermore, in order to utilize the parallelism on the

GPU, H is a multiple of the GPU’s warp size. Since a sequential

scan is performed on each row and involves no synchronizations,

the performance of MatrixScan operation can be further improved

by maximizing W. We therefore, assign H to be the warp size in

our implementation. Our choice of H and W ensures high

granularity of work per active thread between the synchronization

points (steps one and three).

In step two, the column can be scanned by multiple threads of a

warp similarly to MatrixScan. We logically represent the column

as a 2D matrix Wc×Hc, mask Hc threads to work on Wc-long

rows (steps one and three), and sequentially scan the Hc-long

column in step two. We note that while this gives the best

performance, the gain may not be significant as compared to

scanning the entire column sequentially using a single thread.

If the block size is less than the matrix size, then we pad the

remaining elements to the identity element. This approach may

result in extra computation for the last, partial block, but

simplifies the logic of MatrixScan for scanning a full block. The

resulting kernel has lower instruction count and uses fewer

registers.

4.1.1 Backward Scan
The backward scan primitive is analogous to forward scan, but

traverses the input sequence in the reverse direction. There are

two approaches to implement a backward scan. First, when a

block is loaded into shared memory, it is reversed, so that the

forward scan algorithm can be applied; when the result is stored

into memory, it is reversed again. This approach may introduce

some overhead for sequence reversal, but allows one to reuse

more code of the forward scan implementation. Alternatively, the

computation of the forward scan can be reversed without the need

to reverse the sequence, avoiding potential overhead. Our

implementation uses the latter approach. Our backward scan is

similar to forward scan except in the traversal; we reverse the

loops and the order of operands to support non-commutative -

operations in MatrixScan. Our backward scan implementation

achieves performance comparable to our forward scan for all

inputs.

4.1.2 Analysis of Matrix-based Scan Kernel
Our algorithm requires lower memory bandwidth than prior scan

algorithms on GPUs. For example, prior GPU-based algorithms

require ≈4N memory accesses and our algorithm reduces this

number to approximately 3N memory accesses. Our matrix

representation eliminates bank-conflicts in accessing shared

memory for both the reduction and scan phases. Moreover, the

sequential reduction and scan algorithms on the rows in shared

memory require only a single conditional statement and avoid the

additional index arithmetic of the tree-based algorithms. In

addition, the sequential operations on the rows do not require

synchronization operations. The resulting algorithm has

significantly lower overhead than binary-tree-based algorithms.

Our kernel algorithm also scales better whenever B > num_banks

× warp_size. Therefore, as the shared memory size increases, the

algorithm performs better on larger blocks. In contrast, the binary-

tree based algorithms perform well when B < numbanks2
 and

exhibits high-degree bank conflicts for larger B.

The recursive scheme of our or prior scan algorithms requires one

reduction value per block to be stored to and later loaded from

GPU memory to be propagated across the corresponding block.

As we access a single element per block, the accesses are

uncoalesced and the performance is usually lower than that of

coalesced accesses. However, the number of such uncoalesced

Figure 3. Sequence arranged as a 2D matrix.

X0 X1 … Xw-2 Xw-1 pad

Xw Xw+1 X2w-2 X2w-1 pad

…

…

…

…

…

X(h/2-1)w … X(h/2)w-1 pad

X(h/2)w … X(h/2+1)w-1 pad

…

…

…

…

…

X(h-1)w … Xhw-1 pad

W = B / H

H

MatrixScan() {

 // Step I. Reduce rows using H threads.
 if (threadId < H) {

 T* row = &s[threadId*(W+pad)];

 T res = row[0];

 for (int i=1; i<W; ++i) res=res row[i];

 column[threadId] = res;

 }

 sync();

 scanColumn(); // Step II.
 sync();

 // Step III. Scan rows using H threads.
 if (threadId < H) {

 T* row = &s[threadId*(W+pad)];

 T res = column[threadId];

 for (int i=0; i<W; ++i) {

 T t = row[i];

 row[i] = res;

 res = res t;

 }

 }

}

Figure 4. Matrix-based unsegmented forward scan kernel.

208

accesses is much smaller as compared to the total number of

memory accesses in the entire scan algorithm. The recursive level

k performs only 2(N/Bk) uncoalesced accesses. For example, for a

sequence of 1M elements and a block size of 1K, the number of

uncoalesced accesses is 2*1M/1K=2K, while the total number of

accesses is 3*1M+2K; thus, the ratio is approximately 6.5e-4. In

practice, our experiments showed that these memory accesses

contribute to no more than 2% to the total runtime over the input

sizes.

4.2 Segmented Scan
We extend our matrix-based formulation of unsegmented scans on

GPUs to segmented scans. We use a 2D matrix with padding to

arrange a block, as described in Section 4.1. A partial block is

padded in shared memory with ε and scanned as a full block. We

use a compressed head-flag representation to indicate the start of a

new segment. Each element has a bit-flag associated with it. To

reduce the shared memory usage, 32 flags of consecutive elements

are packed into an integer. When sequentially scanning a piece of

a sequence, the running scan result must not propagate to the next

segment; instead, it must be reset. This is easy to incorporate into

the sequential code traversing rows (or column). Figure 5 shows

the segmented scan kernel pseudocode for a block of an input

sequence (first recursive level)2.

The algorithm consists of three stages. During the first stage, each

of H threads scans its row of the matrix. If the start of a new

segment is detected by the statement labeled 1, the running scan

result res is reset to ε , starting a new scan. The scan result for

the row’s last element is saved in column; the row flag f is

saved in flagColumn. Arrays column and flagColumn are

used in the second step of applying segmented scan to compute

preceding scan values for the first segment of each row. Note that

head-flags in flagColumn are not compressed. Each column

flag occupies a 4-byte word w. This is an affordable space

overhead that allows us to maintain a highly-parallel

implementation. We use several threads to perform the segmented

scan of column for the best performance, similarly to how it is

done for the unsegmented scan. In addition, the code must be

extended to not propagate the running scan value beyond the start

of a new segment. Finally, the scan value pr of the subsequence

preceding each row must be propagated across the first segment of

the row if the segment started before the row’s first element. We

use variable ff, initialized to 0, to detect the start of a new

segment. Statement 5 true-branch propagates pr only until a set

flag is encountered.

4.2.1 Backward Segmented Scan
The backward segmented scan is similar to the forward segmented

scan primitive, but traverses the sequence from end to start.

Clearly, it is prudent to have a unified flag representation for both

forward and backward segmented scans. We use the compressed

head-flag representation, so that, for a forward segmented scan, a

set flag denotes the start of a segment. However, for the backward

scan, a set flag denotes the end of a segment. There are two

choices to implement a backward segmented scan kernel. One can

reverse the data and flags and use the forward segmented scan

algorithm as suggested in [6]. We reverse the computation and

2 The code for recursive levels in multi-block segmented scan is

slightly different and is discussed in Section 4.2.2.

perform the backward segmented scan similar to the unsegmented

backward scan algorithm in Section 4.1.1.

4.2.2 Multi-block Recursive Segmented Scan
To support efficient segmented scans of large sequences, it is

necessary to divide the input into blocks that can be scanned

inside shared memory. We adapt a recursive solution similar to

that of unsegmented scan (see Figure 2); we implemented the

scan-recursion-propagate (sRp) approach with two additional

optimizations discussed below. For each block b, we collect rb,

the result of scanning b’s last segment, as well as the block flag fb,

computed by OR-ing all flags corresponding to b’s elements.

Recursive level flags are not compressed; each flag occupies a 4-

byte word. We trade acceptable space overhead to maintain

efficient parallelization by enabling multi-processors to write fb to

non-overlapping memory locations.

A set fb flag indicates that a new segment starts inside b and the

scan result of the subsequence preceding b must not be propagated

to blocks following b in the sequence. rb and fb are inputs to the

next recursive level of multi-block segmented scan. Pseudocode

in Figure 5 must be slightly changed to produce proper segmented

scan result for recursive levels. The statement labeled 1 must reset

res to t, rather than ε , because a set flag on recursive levels

does not indicate the start of a new segment; it merely indicates

that the segment ends somewhere inside the block. For the same

reason, statement 1 must be moved right after statement 3 and

statements labeled 4 and 5 must be swapped.

For each block b, the recursive call produces pb – the scan result

of the subsequence of the segment preceding the first element of

MatrixSegScan() { // for W ≤ 32

 // Step I. Scan rows using H threads.
 if (threadId < H) {

 T* row = &s[threadId*(W+pad)]; // thread row

 FlagT f = load thread flag; // thread flag

 T t = ε , res = ε ;

 for (int i=0; i<W; ++i) {

 // if i-th flag set, reset res

1: res = (f&(1≪i))==0? (res t): ε ;

2: t = row[i];

3: row[i] = res;

 }

 column[threadId] = res;

 flagColumn[threadId] = f;

 }

 sync();

 scanColumn(); // Step II.
 sync();

 // Step III. Fix rows using H threads.
 if (threadId < H) {

 T* row = &s[threadId*(W+pad)]; // thread row
 FlagT ff = 0, f = load thread flag;

 T v = column[threadId]; // value preceding row
 for (int i=0; i<W; ++i) {

4: ff |= f & (1≪i); // 0, if fixing row’s 1st segment

5: if (ff == 0) { // propagate prec. value in 1st segment

 row[i] = v row[i];

 }

 }

 }

}

Figure 5. Segmented scan kernel.

209

b. The value of pb must be propagated across the first segment s of

block b, if s starts before b and continues in b. During the first

scan phase, we efficiently compute the length of the first block

segment sb, using a scan-like algorithm, and save3 it along with rb

and fb. The following propagation phase reads sb and rb and fixes

only the first sb elements of b by -ing them with rb. Knowing sb

enables us to perform another optimization for blocks that lie

entirely within one segment. For such blocks, we perform a faster

unsegmented scan producing equivalent output.

5. EXPERIMENTAL EVALUATION
We have implemented our matrix-based algorithms for the

forward and backward segmented and unsegmented scans using

the CUDA programming API [9]. We studied their performance

on a PC with a high-end Intel CPU and an NVIDIA GPU running

Windows XP. Unless otherwise specified, we report results for an

NVIDIA 8800 GTX GPU, since the conclusions are the same for

all GPUs that we tried.

We have measured the performance of our implementation and

compared it to current state-of-the-art implementations on GPUs.

We measured times to complete a computation on the GPU

assuming that input and output sequences reside in GPU memory.

Our timings did not include the data transfer times between the

host and GPU memories since the scan primitives are usually used

as intermediate steps of a larger computation performed on data

located in GPU memory. To obtain more accurate timing, we

average runtimes of several consecutive invocations with the same

parameters.

5.1 Unsegmented Scan
To achieve the best performance, we code our matrix-scan kernel

carefully. We unroll loops wherever possible to reduce the

overheads of indexing and evaluating conditionals. We select B to

be a power-of-two for two reasons. First, this gives us coalesced

memory accesses when reading/writing the sequence. Second, this

allows us to use shifts for index arithmetic instead of more

expensive multiplies. While only one warp of threads is used to

perform computation, we use several warps to access GPU

memory efficiently. On modern NVIDIA GPUs such as GeForce

8800 GTX, the block size of 1K four-byte elements and the thread

3 We store sb and sf together in a 4-byte word to save space. w’s

highest bit is set to 1 if fb is not zero.

block of 256 threads give us the best performance for our

implementation.

We compared the performance of our novel, matrix-based scan

with an optimized GPU implementation available with the

CUDPP library [9]. The CUDPP scan primitive uses a binary-tree-

based kernel as described in Section 3 and incorporates several

optimizations including register caching. Another tree-based

implementation of scan, distributed with the NVIDIA CUDA

SDK [8], showed at least two times lower performance compared

to CUDPP’s scan due to higher overhead of synchronization,

address computation, and bank conflicts; thus, we do not report

results for CUDA SDK scan.

We measure runtimes for sequences with input lengths 2k-1, 2k,

2k+1, 2k/2*3+1 4-byte word input lengths, where k=10,...,25. We

performed our experiments on both non-powers-of-two and

power-of-two array sizes, since implementations on general inputs

may not be as optimized as powers-of-two arrays. In our

experiments, we used +-scans on sequences of float elements.

The performance of other supported operations such as *, min,

max and other input data types such as int is similar with the

exception of integer multiplication since this is a more expensive

operation on current GPUs.

Figures 6 and 7 show relative elapsed time of CUDPP scan and

matrix-based scan executions for forward and backward scans,

respectively. The runtime is computed relative to that of the

matrix-based version, whose performance is 1.0. For sequences

larger than 1M elements, the matrix-based scan shows up to 52%

(59%) higher performance compared to that of the forward

(backward) tree-based scan. The performance difference between

the algorithms for power-of-two size sequences tends to be

smaller because CUDPP’s scan uses a specialized algorithm for

loading/storing full blocks. The runtimes, measured in

milliseconds for a 1M sequence, are 0.418 (0.438) and

0.298 (0.302) for the forward (backward) CUDPP and matrix-

based scans, respectively. For 32M sequences, the runtimes are

11.50 (12.55) and 8.5 (8.55) ms, respectively. Our implementation

is able to handle large input arrays by using additional

computation to virtualize the blocks on the GPU, while CUDPP is

limited to at most 64M-1K elements due to current hardware

limitations on GeForce-series GPUs.

Runtimes for short sequences are fractions of a millisecond and

are primarily dominated by the cost of launching a kernel on the

Figure 6. Relative runtime of forward scans.

Figure 7. Relative runtime of backward scans.

210

GPU and loading/storing data, and less so by the computation

time, so it is hard to make accurate comparison of kernels. For a

1K-block scan, the matrix-based kernel shows 18% (27%)

improvement over the tree-based kernel for the forward

(backward) direction. There is an interesting spike in relative

performance for lengths between 1K+1 and 2K. The matrix-based

scan runs more than two times faster. The reason is that the

matrix-based kernel handles up to 2K-blocks, while CUDPP’s

kernel works only for 1K-blocks. Therefore, the matrix-based

scan performs a single scan of a 2K-block, and the tree-based scan

has to recursively scan two 1K-blocks, making two passes over

the sequence. Note that this limitation might impede the

performance of CUDPP’s multi-scan for a typical case of

scanning a 1920x1080 image.

Figure 8 shows the effect of disabling one of the optimizations in

our implementation of the forward scan; the runtimes are

normalized to that of the matrix-based scan with all optimizations,

denoted as matrix-based. The performance of CUDPP’s scan is

denoted as tree-based and given only for completeness. The no

padding series denotes the performance of matrix-based scan

without row padding and shows the effect of having shared

memory bank conflicts. The performance of no padding is up to

2.6x worse than that of matrix-based, which indicates that bank

conflicts may significantly degrade performance. The sRp (scan-

recursion-propagate) series corresponds to the performance of

scan without our reduction optimization, which, for large

sequences, is up to 24% slower than matrix-based scan. This

matches with our theoretical analysis of matrix-based scan since it

has 25% less memory accesses. Note that our algorithm without

reduction optimization also outperforms CUDPP due to our

efficient matrix-based scan kernel. Finally, seq. column

corresponds to performance of matrix-based scan where the

column is scanned by one thread; this may result in up to 4.5%

performance degradation.

5.2 Segmented Scan
To the best of our knowledge, the only segmented scan

implementation on GPUs is described in [6]; it is a tree-based

algorithm. Execution times are available for several power-of-

two lengths on an NVIDIA GeForce 8800 GTX. We compare the

performance of this implementation with that of our matrix-based

segmented scan.

Our segmented scan implementation is slightly slower than our

unsegmented scan implementation due to additional logic. For a

given input length, the performance of our algorithm depends on

the lengths and layout of segments, due to the two optimizations

presented in Section 4.2.2. The matrix-based segmented scan is

only up to two times slower than the corresponding unsegmented

scan for the worst segment configuration and only up to 1.55

times slower for the best segment configuration. Because its

performance differs very little for two input lengths l1 and l2 such

that l2=l1+1, we present results only for sequences of 2k lengths.

Figures 9 and 10 show relative execution times for forward and

backward segmented scans. Each chart has three versions: matrix-

best and matrix-worst denote best and worst performance of the

matrix-based segmented scan, respectively; tree denotes the

performance of the tree-based implementation from [6]. Runtimes

are relative to those of the matrix-best variant.

During the scan phase, we compute and store the length of the

first segment for each block. The best performance is achieved if

each block b starts with a new segment, because the second phase

does not have to propagate the scan result pb of the sequence

preceding b across b. The worst performance is achieved if the

sequence is composed of a block-long segments ending at the last

element of each block, because the propagation phase has to

propagate pb across the entire b. The runtime for other segment

configurations is between the best and the worst cases. The

matrix-best variant outperforms matrix-worst by up to 27% (25%)

for the forward (backward) segmented scan.

When a sequence is composed of a few segments that span several

blocks, we perform faster unsegmented scan for blocks falling

Figure 10. Relative runtime of backward segmented scan.

Figure 8. Effect of optimizations in matrix-scan.

Figure 9. Relative runtime of forward segmented scan.

211

within one segment. The best case performance for such a

sequence is achieved when there is only one segment. For large

one-segment sequences, we observed that enabling this

optimization improves performance by up to 24% (18%) for

forward (backward) segmented scans. Compared to matrix-best,

the performance is up to 4% (8%) worse, because the propagation

phase does the most work propagating p across entire b.

Compared to the tree-based implementation tree, our segmented

scan demonstrated much better performance. For input sequences

of 1M+ elements, matrix-worst shows up to 4.35 times better

performance than tree does for the forward segmented scan, and

up to 7.85 times better performance for the backward segmented

scan. Matrix-best’s performance is up to 5.84 times better than

that of tree for the forward segmented scan, and up to 10.32 times

better for the backward direction.

5.3 Radix Sort Application
Many applications [4][7][10][12] that use scan primitives as

building blocks for parallelization will benefit from our fast

matrix-based scan implementations. The overall performance

improvement will be proportional to the fraction of total time in

executing scans. To test the impact of faster scans on real

applications, we integrated our matrix-based scan implementation

with CUDPP’s global radix sort [9], based on the algorithm in

[10] and described in detail in [5].

Radix sort sorts integer keys by processing individual bits.

CUDPP implements a parallel radix sort via invocations of three

GPU kernels for each bit of the key, beginning from the lowest to

highest. An integer array a of length n is sorted in the ascending

order. The first phase constructs a temporary array t of length n, in

which t[i]=0 iff a[i]’s bit is 1, and t[i]=1 iff a[i]’s bit is 0. t is the

input to the forward unsegmented +-scan that, for each element i,

computes the number of 0-bit elements to the left of i. Finally, the

third stage uses the output of scan to scatter the elements to proper

locations.

The execution time of the first two stages is independent of input;

however, the performance of scatter depends on memory access

patterns. Scatter takes the least time if all elements are the same,

because scatter writes are coalesced. Similarly, scatter takes the

most time when none of the writes are coalesced, e.g., for input

a[i]=i, i=0..n-1. The fraction of scan execution time is 30-35% of

the total sort time when the scatter takes the most time and ~55%

when the scatter takes the least time.

We replaced CUDPP’s scan by our faster scan in CUDPP’s radix

sort. For larger sequences4, our scan boosts the overall

performance of the radix sort by 9.5–11.6% for the worst-

performance scatter, and by 12.5–17.7% for the best-performance

scatter; this is consistent with the expected speedups.

5.4 Performance of Scan across GPUs
Scans have low computational intensity – therefore, their

performance is highly influenced by available memory bandwidth.

We measured performance of the scan primitives on three

NVIDIA GPUs: 8800 GTX, 8800 GT, and 8600 GTS, which have

theoretical peak bandwidth of 86.4 GB/sec, 57.6 GB/sec, and 32

GB/sec, respectively. Figure 11 shows the effective memory

bandwidth achieved by our implementation of scan primitives on

4 The improvement is even higher for small sequences.

a 1M-element sequence of floating point data; F and B denote the

forward and backward directions, w and b denote worst- and best-

case segmented scans. We compute the effective bandwidth as

n*2*sizeof(float)/t, where n is sequence length, 2 is the number of

read/write operations per element in a sequential scan, and t is

run-time. As expected, the performance of the scan primitives

increases with the increase in memory bandwidth, achieving the

best performance on an 8800 GTX. In comparison to the current

DRAM bandwidth available to CPUs, the GPUs have an order of

magnitude higher memory bandwidth. Therefore, the performance

of GPU-based scans of large sequences outperforms their CPU-

based counterparts significantly.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a novel matrix-based scan

algorithm. We have presented a detailed analysis on the mapping

of our algorithm to GPUs and contrasted it with prior GPU-based

scan algorithms. We have highlighted its advantages and extended

it to segmented scan and backward scan algorithms. We have also

compared our results to the state-of-the-art algorithms. In practice,

our results have demonstrated a significant performance

improvement over prior GPU-based algorithms.

As a part of the future work, we would like to perform

experiments and study scalability issues on newer generation

GPUs and other highly-parallel architectures. We would also like

to explore new hardware extensions that improve the

programmability on GPUs and apply them to scan primitives.

7. ACKNOWLEDGEMENTS
We would like to thank Burton Smith, Brandon Lloyd, and other

members of the many-core incubation for useful discussions and

feedback. We thank Craig Mundie for the support. Many thanks to

Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John Owens

for providing run-times of their segmented scan implementations.

We would like to thank Henry Moreton for hardware support.

8. REFERENCES
[1] Iverson, K. E. A Programming Language. Wiley, New York,

1962.

[2] Schwartz, J. T. Ultracomputers. ACM Transactions on

Programming Languages and Systems, 2(4), pp 484-521,

Oct. 1980.

Figure 11. Effective scan bandwidth for 1M sequence.

212

[3] NVIDIA. NVIDIA CUDA Compute Unified Device

Architecture Programming Guide, v. 1.1, Nov. 2007,

http://developer.download.nvidia.com/compute/cuda/1_1/NV

IDIA_CUDA_Programming_Guide_1.1.pdf.

[4] Blelloch, G. E. Prefix Sums and Their Applications.

Technical Report CMU-CS-90-190, Carnegie Mellon

University, Pittsburgh, PA, Nov. 1990. Book Chapter in

Synthesis of Parallel Algorithms, Reif, J. H. (Ed.).

[5] Harris, M., Sengupta, S., and Owens, J. D. Parallel Prefix

Sum (Scan) with CUDA. GPU Gems 3, Hguyen, H. (Ed.).

Addison-Wesley, Aug. 2007, ch. 39.

[6] Sengupta, S., Harris, M., Zhang, Y., and Owens, J. D. Scan

Primitives for GPU Computing. Graphics Hardware 2007.

San Diego, CA, Aug. 2007.

[7] Chatterjee, S., Blelloch, G. E., and Zagha, M. Scan

Primitives for Vector Computers. Proceedings of the 1990

Conference on Supercomputing. New York, NY, 1990, pp.

666 – 675.

[8] NVIDIA CUDA SDK.

http://developer.nvidia.com/object/cuda.html.

[9] CUDA Data Parallel Primitives Library – CUDPP.

http://www.gpgpu.org/developer/cudpp/rel/rel_gems3/html/i

ndex.html.

[10] Blelloch, G. E. Scans as Primitive Parallel Operations.

Proceeding of the International Conference on Parallel

Processing. 1987, pp 355–362.

[11] Horn, D. Stream Reduction Operations for GPGPU

Applications. GPU Gems 2, Pharr, M. (Ed.). Addison-

Wesley, pp 573–589.

[12] Hensley, J., Scheuermann, T., Coombe, G., Singh, M., Lastra

A. Fast Summed-Area Table Generation and its

Applications. Computer Graphics Forum 24 (3), pp. 547–

555.

[13] Sengupta S., Lefohn A., and Owens, J. A Work-Efficient

Step-Efficient Prefix-Sum Algorithm. Proceedings of the

Workshop on Edge Computing Using New Commodity

Architectures. Chapel Hill, NC, May 2006, pp. 26–27.

[14] Cray-Cyber.org. Cray Y-MP EL. http://www.cray-

cyber.org/systems/yel.php.

[15] Hwu, W. and Kirk, D. UIUC ELE 498 AL1: Programming

Massively Parallel Processors.

http://courses.ece.uiuc.edu/ece498/al1.

[16] Blelloch, G. E., Heroux, M. A., and Zagha, M. Segmented

Operations for Sparse Matrix Computation on Vector

Multiprocessors. Tech. Rep. CMU-CS-93- 173, School of

Computer Science, Carnegie Mellon University, Aug. 1993.

[17] Blelloch G. E. Vector Models for Data-Parallel Computing.

MIT Press, 1990.

[18] Greβ A., Guthe M., Klein R. GPU-based collision detection

for deformable parameterized surfaces. Computer Graphics

Forum 25, 3 (Sept. 2006), 497-506.

[19] Blelloch, G. E., Siddhartha, C., Marco Z. Solving linear

recurrences with loop raking. Journal of Parallel and

Distributed Computing, 25(1), pp 91-97, Feb. 2005.

213

