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ABSTRACT 

Scan and segmented scan are important data-parallel primitives 

for a wide range of applications. We present fast, work-efficient 

algorithms for these primitives on graphics processing units 

(GPUs). We use novel data representations that map well to the 

GPU architecture. Our algorithms exploit shared memory to 

improve memory performance. We further improve the 

performance of our algorithms by eliminating shared-memory 

bank conflicts and reducing the overheads in prior shared-memory 

GPU algorithms. Furthermore, our algorithms are designed to 

work well on general data sets, including segmented arrays with 

arbitrary segment lengths. We also present optimizations to 

improve the performance of segmented scans based on the 

segment lengths. We implemented our algorithms on a PC with an 

NVIDIA GeForce 8800 GPU and compared our results with prior 

GPU-based algorithms. Our results indicate up to 10x higher 

performance over prior algorithms on input sequences with 

millions of elements. 

Categories and Subject Descriptors 

D.1.3 [Concurrent Programming]: Parallel programming. 

General Terms 

Algorithms, performance. 

Keywords 

Scan, all-prefix-sum, segmented scan, GPGPU, GPU, parallel 

algorithm, HPC, many-core. 

1. INTRODUCTION 
Graphics processing units (GPUs) are programmable processors 

with high memory bandwidth and high parallelism. They are 

mainly designed for gaming applications. With the introduction of 

new features such as atomic and scatter operations, and shared 

register files, several data parallel algorithms such as quicksort [6] 

can be mapped to GPUs. The basic building blocks in many of 

these data-parallel algorithms are scan primitives, and several 

scan algorithms have been designed for parallel processors [4][7]. 

Recently, many scan algorithms have been implemented for GPUs 

[11][13][5][6][15]. These algorithms exploit the high memory 

bandwidth and massive parallelism on GPUs. The current state-

of-the-art GPU-based algorithms also exploit shared memory to 

improve the performance of scans. In this paper, we analyze the 

issues in mapping scan algorithms to the GPU architecture. We 

highlight that the prior algorithms deliver suboptimal performance 

due to high overhead of shared-memory bank conflicts, 

synchronization, and index arithmetic. 

We present fast scan algorithms that map better to GPUs and 

achieve higher performance than prior GPU-based algorithms. 

Our main contribution is a novel data representation in shared and 

global memory that maps better to the GPU memory hierarchy 

and the scan algorithms. Accesses to the data representation 

involve no bank conflicts in the shared memory while exploiting 

the high parallelism on GPUs. Our algorithm involves low 

overhead compared to prior approaches and the performance of 

the kernel scales better with shared memory sizes. 

We implemented our algorithms on a PC with a modern NVIDIA 

GPU. We benchmark our algorithms against prior state-of-the-art 

GPU-based algorithms on several GPUs. Our results on 

unsegmented scans indicate up to 60% higher performance than 

prior optimized algorithms. On segmented scans, we observed up 

to an order of magnitude higher performance over optimized 

GPU-based segmented scan algorithms. 

Organization of the paper: The rest of the paper is organized as 

follows. In Section 2, we present the related work. In Section 3, 

we give an overview of scan algorithms and the issues in mapping 

them to GPUs. We present our scan algorithms and provide 

analysis in Section 4. In Section 5, we describe our experimental 

results. We summarize the paper and present future work in 

Section 6.  

2. RELATED WORK 
Scan primitive was introduced by Iverson in APL [1]. Blelloch 

provides extensive overview of scans as building blocks of 

parallel algorithms and formalizes scan for the PRAM model [4]. 

Blelloch presented several applications of the scan algorithm such 

as radix sort [17], sparse matrix vector multiply [16], etc. These 

algorithms may not map directly to GPUs due to complexities of 

modern GPU architectures such as memory bank conflicts.  

Horn [11] presented the first GPU-based scan algorithm used in 

the context of non-uniform stream compaction. Horn’s 

implementation utilized graphics programming APIs and used the 

streaming model for the scan operation. Hensley et al. [12] 

improved the performance of scan primitives for computing 

summed area tables. Although these algorithms map well to 

GPUs, they are not work-efficient. Using graphics programming 
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APIs, Sengupta et al. [13] and Greβ et al. [18] presented work-

efficient scan-based algorithms.   

More recently, Harris et al. [5] and Sengupta et al. [6] presented 

implementations of work-efficient scan and segmented scan 

primitives, respectively, on NVIDIA GPUs using the CUDA 

programming API. Their algorithms extend the algorithms 

proposed by Blelloch [4] to GPUs. Both of these algorithms 

exploit shared memory on GPUs to achieve higher performance 

than prior algorithms. However, these algorithms involve bank 

conflicts and their kernels may not scale well with shared memory 

size resulting in suboptimal performance.  

Chatterjee et al. [7] use a 2D matrix to decompose the input vector 

into chunks small enough to fit inside a vector register of Cray Y-

MP architecture [14]. More generally, Blelloch et al. [19] use loop 

raking to solve linear recurrences on vector architectures. Our 

algorithm is similar to these approaches. As we use a shared 

register file on the GPUs, our mapping accounts for memory bank 

conflicts and overheads of index arithmetic and synchronization. 

Moreover, we generalize their representation to a multi-

dimensional matrix representation that maps better to the memory 

hierarchy on GPUs.  

3. OVERVIEW OF GPUS AND SCAN 

PRIMITIVES 
In this section, we provide a brief overview of scans and the GPU 

programming model. We highlight some of the main issues in 

mapping the prior algorithms to GPUs.  

3.1 Scans 
The scan primitive [1] operates on a monoid  with an 

associative binary operation : ×  and a left identity 

element ε , such that a , ε   a = a. Given an input 

sequence A=[a0, …, an-1] of n elements, the exclusive scan 

primitive transforms A into output sequence B=[b0, ..., bn-1] such 

that [b0, ..., bn-1]=[ε , a0, a0  a1, …, a0  …  an-2]. The 

inclusive scan primitive transforms A into [a0, a0  a1, …, a0  … 

 an-2  an-1]. In this work, we focus on exclusive scans, noting 

that the ideas can be trivially extended to handle inclusive scans. 

The described primitives are forward scans. The backward scan 

primitives are similar to the equivalent forward scans, but traverse 

the input sequence in reverse direction. The exclusive backward 

scan transforms A into C=[ε , an-1, an-1  an-2, …, an-1  …  a1].  

Examples of binary operations used in scans include addition, 

multiplication, minimum, and maximum operations. These binary 

operations work on floating point or integer operands.  The 

identities used in scans are 0, 1, + , - , respectively. In this 

paper, the exact operation and data types have no difference on 

our algorithm, so we use + as the operation of choice in the rest of 

the paper and refer to this scan primitive as +-scan. An example of 

the +-scan application on an input array A is given below. The 

output arrays for forward and backward scans are shown in B and 

C, respectively 

A = [1, 7,-4, 2, 2,-1, 5] // input 

B = [0, 1, 8, 4, 6, 8, 7] // exclusive, forward 

C = [0, 5, 4, 6, 8, 4, 11] // exclusive, backward 

The scan primitive operates on the entire sequence. In practice, 

many applications need to scan several sequences. Rather than 

executing several independent scans, one for each input sequence, 

it has been a common practice to use the segmented scan 

primitive [2]. The input sequences, called segments, are stored 

together, one after another, in one input vector. To scan these 

sequences simultaneously, the segmented scan primitive needs an 

additional input – a vector that enables scan to identify original 

subsequences. For instance, this information can be conveyed by a 

vector of head-flags where a set flag denotes the first element of a 

new segment. Similar to scans, the segmented scan primitives can 

be exclusive and inclusive as well as forward and backward. We 

focus on exclusive forward and backward segmented scans. If 

segments are identified via head-flags, the backward segmented 

scan must treat set flags as the segment end flags. An example of 

the segmented +-scan application is shown below: 

A   = [1, 7,-4, 2, 2,-1, 5] // input 

Flags = [1, 0, 1, 1, 0, 0, 0] // head-flags 

B   = [0, 1, 0, 0, 2, 4, 3] // exclusive, forward 

C   = [0, 5, 4, 6, 0, 0, 7] // exclusive, backward 

3.2 GPU Programming Model and Scans 
GPUs consist of a number of multiprocessors, each of which can 

execute the same program on each element of a data set. For 

optimal performance, the data set is typically decomposed into 

fixed-size blocks that can each be assigned to a multiprocessor 

core. Each multiprocessor processes the fixed-size blocks by 

executing on a small subset of the data elements in a block 

simultaneously. Multiprocessor context switches between subsets 

of data elements are inexpensive compared to CPU threads. By 

switching the multiprocessor to a different subset of data 

elements, pipeline stalls due to data hazards and memory latency 

to the DRAM can be effectively hidden. We refer to a group of 

threads executed in SIMD fashion as a warp. 

Recent GPUs such as the NVIDIA G80 have a shared memory or 

register file with synchronization primitives to enable 

communication between threads running on the same thread 

block. The shared register file typically consists of several 

memory banks that can be accessed simultaneously by threads of 

a warp. The accesses to shared register file are similar to local 

register accesses except when the memory accesses involve 

register bank conflicts. A conflict occurs when several threads 

access the same shared memory bank; in which case, the accesses 

are serialized and their latency increases, resulting in degraded 

performance. 

The performance of GPU memory subsystem depends on memory 

access patterns. The best performance is achieved when memory 

accesses are coalesced; i.e., k consecutive threads of a warp 

reference k properly aligned contiguous elements of the same size. 

Scan primitives can be efficiently implemented by exploiting the 

large number of threads on GPUs and using shared memory to 

reduce the latency of memory accesses. Many of the current GPU-

based algorithms [5][6] use a traditional binary-tree-based 

algorithm to improve the performance of scans.  
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The binary-tree-based scan algorithm proceeds in log n stages. In 

each stage, the binary operator is applied to two distinct elements 

in the input array and the output is stored into a new array as 

shown in Figure 1, where different shading denotes elements 

accesses by threads of the same warp. In order to further improve 

the performance, Harris et al. [5] proposed the fast-scan 

algorithm. The fast-scan algorithm decomposes the input array 

into blocks of size B that fit in the shared memory and performs 

scan on the decomposed blocks. The scan on the entire sequence 

is then implemented using a recursive multi-block scan.  

In order to utilize the high parallelism on GPUs, the fast-scan 

algorithm performs an efficient mapping of the threads on the 

multi-processors to the elements in the stages of the binary tree. In 

each stage, a thread operates on two distinct elements and the 

output is written to a shared-memory location. The fast-scan 

algorithm also uses a padding scheme, based on the number of 

shared memory banks, to improve performance of logical accesses 

to shared-memory locations. The additional padding reduces bank 

conflicts in accessing the elements in shared memory. The 

resulting algorithm is fast and achieves significantly higher 

performance than prior GPU-based unsegmented scan algorithms. 

Sengupta et al. [6] proposed segmented scan algorithms which use 

a tree-based technique, similar to those of the fast-scan, for arrays 

with multiple segments. Although the algorithms are fast, their 

mappings on GPUs have several issues: 

 Global memory accesses: The fast-scan algorithm writes the 

results of intermediate scans in shared memory to the global 

memory. While this reduces the computation, it has a higher 

global memory overhead than necessary in a streaming 

architecture.  

 Shared memory accesses: The padding scheme in fast-scan 

eliminates the bank-conflicts in the first few stages. 

However, the fast-scan algorithm has high-degree bank 

conflicts in the higher stages whenever B>numbanks2, where 

B is size of the block being scanned. This is mainly because 

the stride for memory accesses in the higher-stages becomes 

a multiple of the number of shared memory banks. This may 

limit the performance and scalability if shared memory size 

increases faster than the number of banks in future 

architectures. In addition, the padding scheme recomputes 

element indices for each level of the tree per thread warp 

active on the level, introducing additional overheads; thus, 

the overheads increase with the number of threads. 

 Synchronization between stages: In order to communicate 

between threads across stages, intermediate values after a 

stage is complete are written to shared memory and threads 

are synchronized before beginning the next stage. Using a 

binary-tree based algorithm, O(log n) synchronizations are 

required. The synchronization operations in the algorithm 

can be expensive as the number of threads increase. 

In this paper, we address these problems using a memory-efficient 

algorithm that achieves better performance than prior GPU-based 

scan algorithms. 

4. SCAN ALGORITHMS 
In this section, we present our algorithms for unsegmented and 

segmented scans. We later extend our algorithms to handle 

backward scans. We present an analytical analysis of our 

algorithms. 

4.1 Unsegmented Scan 
Given an array A0 of size N, we decompose the array into blocks 

of size B that fit in shared memory. We reduce the elements in 

each block and store the result of the reduction into a new, smaller 

array A1 of size N/B . We recursively invoke the scan operation 

on A1. We stop the recursion when the size of the input array to 

scan is no greater than B. We then perform a scan operation on A1 

and store the result in A1. Finally, we perform a scan operation on 

each block Bi of A0 and combine the element A1[i] with elements 

in block Bi. We store the result in A0, which is the scan of array 

A0. This is schematically shown for two levels in Figure 2. Each 

level of recursion involves synchronization1 to ensure that the 

next stage uses proper values produced on the prior stage. We can 

abstract the array A0 as a BxBx…xB matrix, and the recursive 

invocation as the application of our algorithm to each dimension 

in the matrix. 

We refer to our algorithm as MatrixScan. The main component of 

MatrixScan that is crucial for achieving high performance is the 

GPU kernel shown in Figure 4 to scan a block efficiently. The 

reduction kernel and the recursion logic are rather obvious and 

omitted from the discussion. Our algorithm generalizes the 

binary-tree based scan algorithm proposed by Blelloch [4] for 

vector architectures and maps it efficiently to the memory 

hierarchy on recent GPUs. Both the reduction and scan operations 

                                                                 

1 On today’s GPUs, the commands to execute each level of the 

multi-block scan recursion are issued from the host; thus, the 

synchronization between the levels is implicit. 

X0 X1 X2 X3 X4 X5 X6 X7 

X0 X0..1 X2 X2..3 X4 X4..5 X6 X6..7 

X0 X0..1 X2 X0..3 X4 X4..5 X6 X4..7 

X0 X0..1 X2 X0..3 X4 X4..5 X6 X0..7 

Figure 1. Tree-based reduction of an 8-element sequence. 

Reduce Block 0 Reduce Block 1 Reduce Block 2 Reduce Block 3 

    Input Sequence 

    

    

    

Scan helper array 

Scan Block 0 Scan Block 1 Scan Block 2 Scan Block 3 

    Output Sequence 

Store reduction result for  
block to helper array 

Figure 2. Two-level recursive scan for four blocks. 
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on the blocks of an array can be performed in shared memory. 

Our shared memory algorithm is very similar to our multi-block 

scan algorithm. We arrange the block in the shared memory as a 

2D matrix with dimensions W×H, as shown in Figure 3. 

Our shared memory algorithm proceeds in three steps, as shown 

in Figure 4. First, H threads work in parallel; each thread 

sequentially reduces the row corresponding to the thread ID in the 

matrix and stores the result into the auxiliary array column. We 

then synchronize the threads to ensure that the values are written 

to the auxiliary array. The second step scans column using 

several threads for best performance; this produces scan results pr 

of subsequences preceding each row r. Third, H threads work in 

parallel; each sequentially scans the corresponding row, 

initializing the running scan result res to pr, thus propagating pr 

across r. 

We pad W such that the row length of the matrix is prime relative 

to num_banks in the shared memory.  Our choice of row length 

ensures that there are no bank-conflicts while accessing shared 

memory. Furthermore, in order to utilize the parallelism on the 

GPU, H is a multiple of the GPU’s warp size. Since a sequential 

scan is performed on each row and involves no synchronizations, 

the performance of MatrixScan operation can be further improved 

by maximizing W. We therefore, assign H to be the warp size in 

our implementation.  Our choice of H and W ensures high 

granularity of work per active thread between the synchronization 

points (steps one and three). 

In step two, the column can be scanned by multiple threads of a 

warp similarly to MatrixScan. We logically represent the column 

as a 2D matrix Wc×Hc, mask Hc threads to work on Wc-long 

rows (steps one and three), and sequentially scan the Hc-long 

column in step two. We note that while this gives the best 

performance, the gain may not be significant as compared to 

scanning the entire column sequentially using a single thread. 

If the block size is less than the matrix size, then we pad the 

remaining elements to the identity element. This approach may 

result in extra computation for the last, partial block, but 

simplifies the logic of MatrixScan for scanning a full block. The 

resulting kernel has lower instruction count and uses fewer 

registers. 

4.1.1 Backward Scan 
The backward scan primitive is analogous to forward scan, but 

traverses the input sequence in the reverse direction. There are 

two approaches to implement a backward scan. First, when a 

block is loaded into shared memory, it is reversed, so that the 

forward scan algorithm can be applied; when the result is stored 

into memory, it is reversed again. This approach may introduce 

some overhead for sequence reversal, but allows one to reuse 

more code of the forward scan implementation. Alternatively, the 

computation of the forward scan can be reversed without the need 

to reverse the sequence, avoiding potential overhead. Our 

implementation uses the latter approach. Our backward scan is 

similar to forward scan except in the traversal; we reverse the 

loops and the order of  operands to support non-commutative -

operations in MatrixScan. Our backward scan implementation 

achieves performance comparable to our forward scan for all 

inputs. 

4.1.2 Analysis of Matrix-based Scan Kernel 
Our algorithm requires lower memory bandwidth than prior scan 

algorithms on GPUs. For example, prior GPU-based algorithms 

require ≈4N memory accesses and our algorithm reduces this 

number to approximately 3N memory accesses. Our matrix 

representation eliminates bank-conflicts in accessing shared 

memory for both the reduction and scan phases. Moreover, the 

sequential reduction and scan algorithms on the rows in shared 

memory require only a single conditional statement and avoid the 

additional index arithmetic of the tree-based algorithms. In 

addition, the sequential operations on the rows do not require 

synchronization operations. The resulting algorithm has 

significantly lower overhead than binary-tree-based algorithms. 

Our kernel algorithm also scales better whenever B > num_banks 

× warp_size. Therefore, as the shared memory size increases, the 

algorithm performs better on larger blocks. In contrast, the binary-

tree based algorithms perform well when B < numbanks2
 and 

exhibits high-degree bank conflicts for larger B. 

The recursive scheme of our or prior scan algorithms requires one 

reduction value per block to be stored to and later loaded from 

GPU memory to be propagated across the corresponding block. 

As we access a single element per block, the accesses are 

uncoalesced and the performance is usually lower than that of 

coalesced accesses. However, the number of such uncoalesced 

Figure 3. Sequence arranged as a 2D matrix. 

 

X0 X1 … Xw-2 Xw-1 pad 

Xw Xw+1  X2w-2 X2w-1 pad 

…
 

…
 

 

…
 

…
 

…
 

X(h/2-1)w  …  X(h/2)w-1 pad 

X(h/2)w  …  X(h/2+1)w-1 pad 

…
 

…
 

 

…
 

…
 

…
 

X(h-1)w  …  Xhw-1 pad 

 

 

W = B / H 

H
 

MatrixScan() { 

  // Step I. Reduce rows using H threads. 
  if (threadId < H) { 

    T* row = &s[threadId*(W+pad)]; 

    T res = row[0]; 

    for (int i=1; i<W; ++i) res=res row[i]; 

    column[threadId] = res; 

  } 

  sync(); 

  scanColumn();        // Step II. 
  sync(); 

  // Step III. Scan rows using H threads. 
  if (threadId < H) { 

    T* row = &s[threadId*(W+pad)]; 

    T res = column[threadId]; 

    for (int i=0; i<W; ++i) { 

      T t = row[i]; 

      row[i] = res; 

      res = res  t; 

    } 

  } 

} 

 

Figure 4. Matrix-based unsegmented forward scan kernel. 
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accesses is much smaller as compared to the total number of 

memory accesses in the entire scan algorithm. The recursive level 

k performs only 2(N/Bk) uncoalesced accesses. For example, for a 

sequence of 1M elements and a block size of 1K, the number of 

uncoalesced accesses is 2*1M/1K=2K, while the total number of 

accesses is 3*1M+2K; thus, the ratio is approximately 6.5e-4. In 

practice, our experiments showed that these memory accesses 

contribute to no more than 2% to the total runtime over the input 

sizes. 

4.2 Segmented Scan 
We extend our matrix-based formulation of unsegmented scans on 

GPUs to segmented scans. We use a 2D matrix with padding to 

arrange a block, as described in Section 4.1. A partial block is 

padded in shared memory with ε  and scanned as a full block. We 

use a compressed head-flag representation to indicate the start of a 

new segment. Each element has a bit-flag associated with it. To 

reduce the shared memory usage, 32 flags of consecutive elements 

are packed into an integer. When sequentially scanning a piece of 

a sequence, the running scan result must not propagate to the next 

segment; instead, it must be reset. This is easy to incorporate into 

the sequential code traversing rows (or column). Figure 5 shows 

the segmented scan kernel pseudocode for a block of an input 

sequence (first recursive level)2. 

The algorithm consists of three stages. During the first stage, each 

of H threads scans its row of the matrix. If the start of a new 

segment is detected by the statement labeled 1, the running scan 

result res is reset to ε , starting a new scan. The scan result for 

the row’s last element is saved in column; the row flag f is 

saved in flagColumn. Arrays column and flagColumn are 

used in the second step of applying segmented scan to compute 

preceding scan values for the first segment of each row. Note that 

head-flags in flagColumn are not compressed. Each column 

flag occupies a 4-byte word w. This is an affordable space 

overhead that allows us to maintain a highly-parallel 

implementation. We use several threads to perform the segmented 

scan of column for the best performance, similarly to how it is 

done for the unsegmented scan. In addition, the code must be 

extended to not propagate the running scan value beyond the start 

of a new segment. Finally, the scan value pr of the subsequence 

preceding each row must be propagated across the first segment of 

the row if the segment started before the row’s first element. We 

use variable ff, initialized to 0, to detect the start of a new 

segment. Statement 5 true-branch propagates pr only until a set 

flag is encountered.  

4.2.1 Backward Segmented Scan 
The backward segmented scan is similar to the forward segmented 

scan primitive, but traverses the sequence from end to start. 

Clearly, it is prudent to have a unified flag representation for both 

forward and backward segmented scans. We use the compressed 

head-flag representation, so that, for a forward segmented scan, a 

set flag denotes the start of a segment. However, for the backward 

scan, a set flag denotes the end of a segment. There are two 

choices to implement a backward segmented scan kernel. One can 

reverse the data and flags and use the forward segmented scan 

algorithm as suggested in [6]. We reverse the computation and 

                                                                 

2 The code for recursive levels in multi-block segmented scan is 

slightly different and is discussed in Section 4.2.2. 

perform the backward segmented scan similar to the unsegmented 

backward scan algorithm in Section 4.1.1. 

4.2.2 Multi-block Recursive Segmented Scan 
To support efficient segmented scans of large sequences, it is 

necessary to divide the input into blocks that can be scanned 

inside shared memory. We adapt a recursive solution similar to 

that of unsegmented scan (see Figure 2); we implemented the 

scan-recursion-propagate (sRp) approach with two additional 

optimizations discussed below. For each block b, we collect rb, 

the result of scanning b’s last segment, as well as the block flag fb, 

computed by OR-ing all flags corresponding to b’s elements. 

Recursive level flags are not compressed; each flag occupies a 4-

byte word. We trade acceptable space overhead to maintain 

efficient parallelization by enabling multi-processors to write fb to 

non-overlapping memory locations.  

A set fb flag indicates that a new segment starts inside b and the 

scan result of the subsequence preceding b must not be propagated 

to blocks following b in the sequence. rb and fb are inputs to the 

next recursive level of multi-block segmented scan. Pseudocode 

in Figure 5 must be slightly changed to produce proper segmented 

scan result for recursive levels. The statement labeled 1 must reset 

res to t, rather than ε , because a set flag on recursive levels 

does not indicate the start of a new segment; it merely indicates 

that the segment ends somewhere inside the block. For the same 

reason, statement 1 must be moved right after statement 3 and 

statements labeled 4 and 5 must be swapped. 

For each block b, the recursive call produces pb – the scan result 

of the subsequence of the segment preceding the first element of 

MatrixSegScan() {   // for W ≤ 32 

  // Step I. Scan rows using H threads. 
  if (threadId < H) { 

    T* row = &s[threadId*(W+pad)]; // thread row 

    FlagT f = load thread flag;  // thread flag 

    T t = ε , res = ε ; 

    for (int i=0; i<W; ++i) { 

      // if i-th flag set, reset res 

1:    res = (f&(1≪i))==0? (res  t): ε ; 

2:    t = row[i]; 

3:    row[i] = res; 

    } 

    column[threadId] = res; 

    flagColumn[threadId] = f; 

  } 

  sync(); 

  scanColumn(); // Step II. 
  sync(); 

  // Step III. Fix rows using H threads. 
  if (threadId < H) { 

    T* row = &s[threadId*(W+pad)]; // thread row 
    FlagT ff = 0, f = load thread flag;  

    T v = column[threadId]; // value preceding row 
    for (int i=0; i<W; ++i) { 

4:    ff |= f & (1≪i); // 0, if fixing row’s 1st segment 

5:    if (ff == 0) { // propagate prec. value in 1st segment 

        row[i] = v  row[i]; 

      } 

    } 

  } 

} 

Figure 5. Segmented scan kernel. 
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b. The value of pb must be propagated across the first segment s of 

block b, if s starts before b and continues in b. During the first 

scan phase, we efficiently compute the length of the first block 

segment sb, using a scan-like algorithm, and save3 it along with rb 

and fb. The following propagation phase reads sb and rb and fixes 

only the first sb elements of b by -ing them with rb. Knowing sb 

enables us to perform another optimization for blocks that lie 

entirely within one segment. For such blocks, we perform a faster 

unsegmented scan producing equivalent output. 

5. EXPERIMENTAL EVALUATION 
We have implemented our matrix-based algorithms for the 

forward and backward segmented and unsegmented scans using 

the CUDA programming API [9]. We studied their performance 

on a PC with a high-end Intel CPU and an NVIDIA GPU running 

Windows XP. Unless otherwise specified, we report results for an 

NVIDIA 8800 GTX GPU, since the conclusions are the same for 

all GPUs that we tried. 

We have measured the performance of our implementation and 

compared it to current state-of-the-art implementations on GPUs. 

We measured times to complete a computation on the GPU 

assuming that input and output sequences reside in GPU memory. 

Our timings did not include the data transfer times between the 

host and GPU memories since the scan primitives are usually used 

as intermediate steps of a larger computation performed on data 

located in GPU memory. To obtain more accurate timing, we 

average runtimes of several consecutive invocations with the same 

parameters. 

5.1 Unsegmented Scan 
To achieve the best performance, we code our matrix-scan kernel 

carefully. We unroll loops wherever possible to reduce the 

overheads of indexing and evaluating conditionals. We select B to 

be a power-of-two for two reasons. First, this gives us coalesced 

memory accesses when reading/writing the sequence. Second, this 

allows us to use shifts for index arithmetic instead of more 

expensive multiplies. While only one warp of threads is used to 

perform computation, we use several warps to access GPU 

memory efficiently. On modern NVIDIA GPUs such as GeForce 

8800 GTX, the block size of 1K four-byte elements and the thread 

                                                                 

3 We store sb and sf together in a 4-byte word to save space. w’s 

highest bit is set to 1 if fb is not zero. 

block of 256 threads give us the best performance for our 

implementation. 

We compared the performance of our novel, matrix-based scan 

with an optimized GPU implementation available with the 

CUDPP library [9]. The CUDPP scan primitive uses a binary-tree-

based kernel as described in Section 3 and incorporates several 

optimizations including register caching. Another tree-based 

implementation of scan, distributed with the NVIDIA CUDA 

SDK [8], showed at least two times lower performance compared 

to CUDPP’s scan due to higher overhead of synchronization, 

address computation, and bank conflicts; thus, we do not report 

results for CUDA SDK scan. 

We measure runtimes for sequences with input lengths 2k-1, 2k, 

2k+1, 2k/2*3+1 4-byte word input lengths, where k=10,...,25. We 

performed our experiments on both non-powers-of-two and 

power-of-two array sizes, since implementations on general inputs 

may not be as optimized as powers-of-two arrays. In our 

experiments, we used +-scans on sequences of float elements. 

The performance of other supported operations such as *, min, 

max and other input data types such as int is similar with the 

exception of integer multiplication since this is a more expensive 

operation on current GPUs.  

Figures 6 and 7 show relative elapsed time of CUDPP scan and 

matrix-based scan executions for forward and backward scans, 

respectively. The runtime is computed relative to that of the 

matrix-based version, whose performance is 1.0. For sequences 

larger than 1M elements, the matrix-based scan shows up to 52% 

(59%) higher performance compared to that of the forward 

(backward) tree-based scan. The performance difference between 

the algorithms for power-of-two size sequences tends to be 

smaller because CUDPP’s scan uses a specialized algorithm for 

loading/storing full blocks. The runtimes, measured in 

milliseconds for a 1M sequence, are 0.418 (0.438)  and 

0.298 (0.302) for the forward (backward) CUDPP and matrix-

based scans, respectively. For 32M sequences, the runtimes are 

11.50 (12.55) and 8.5 (8.55) ms, respectively. Our implementation 

is able to handle large input arrays by using additional 

computation to virtualize the blocks on the GPU, while CUDPP is 

limited to at most 64M-1K elements due to current hardware 

limitations on GeForce-series GPUs.  

Runtimes for short sequences are fractions of a millisecond and 

are primarily dominated by the cost of launching a kernel on the 

 

Figure 6. Relative runtime of forward scans. 

 

 

 

Figure 7. Relative runtime of backward scans. 
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GPU and loading/storing data, and less so by the computation 

time, so it is hard to make accurate comparison of kernels. For a 

1K-block scan, the matrix-based kernel shows 18% (27%) 

improvement over the tree-based kernel for the forward 

(backward) direction. There is an interesting spike in relative 

performance for lengths between 1K+1 and 2K. The matrix-based 

scan runs more than two times faster. The reason is that the 

matrix-based kernel handles up to 2K-blocks, while CUDPP’s 

kernel works only for 1K-blocks. Therefore, the matrix-based 

scan performs a single scan of a 2K-block, and the tree-based scan 

has to recursively scan two 1K-blocks, making two passes over 

the sequence. Note that this limitation might impede the 

performance of CUDPP’s multi-scan for a typical case of 

scanning a 1920x1080 image. 

Figure 8 shows the effect of disabling one of the optimizations in 

our implementation of the forward scan; the runtimes are 

normalized to that of the matrix-based scan with all optimizations, 

denoted as matrix-based. The performance of CUDPP’s scan is 

denoted as tree-based and given only for completeness. The no 

padding series denotes the performance of matrix-based scan 

without row padding and shows the effect of having shared 

memory bank conflicts. The performance of no padding is up to 

2.6x worse than that of matrix-based, which indicates that bank 

conflicts may significantly degrade performance. The sRp (scan-

recursion-propagate) series corresponds to the performance of 

scan without our reduction optimization, which, for large 

sequences, is up to 24% slower than matrix-based scan. This 

matches with our theoretical analysis of matrix-based scan since it 

has 25% less memory accesses. Note that our algorithm without 

reduction optimization also outperforms CUDPP due to our 

efficient matrix-based scan kernel. Finally, seq. column 

corresponds to performance of matrix-based scan where the 

column is scanned by one thread; this may result in up to 4.5% 

performance degradation. 

5.2 Segmented Scan 
To the best of our knowledge, the only segmented scan 

implementation on GPUs is described in [6]; it is a tree-based 

algorithm.  Execution times are available for several power-of-

two lengths on an NVIDIA GeForce 8800 GTX.  We compare the 

performance of this implementation with that of our matrix-based 

segmented scan.  

Our segmented scan implementation is slightly slower than our 

unsegmented scan implementation due to additional logic. For a 

given input length, the performance of our algorithm depends on 

the lengths and layout of segments, due to the two optimizations 

presented in Section 4.2.2. The matrix-based segmented scan is 

only up to two times slower than the corresponding unsegmented 

scan for the worst segment configuration and only up to 1.55 

times slower for the best segment configuration. Because its 

performance differs very little for two input lengths l1 and l2 such 

that l2=l1+1, we present results only for sequences of 2k lengths. 

Figures 9 and 10 show relative execution times for forward and 

backward segmented scans. Each chart has three versions: matrix-

best and matrix-worst denote best and worst performance of the 

matrix-based segmented scan, respectively; tree denotes the 

performance of the tree-based implementation from [6]. Runtimes 

are relative to those of the matrix-best variant.  

During the scan phase, we compute and store the length of the 

first segment for each block. The best performance is achieved if 

each block b starts with a new segment, because the second phase 

does not have to propagate the scan result pb of the sequence 

preceding b across b. The worst performance is achieved if the 

sequence is composed of a block-long segments ending at the last 

element of each block, because the propagation phase has to 

propagate pb across the entire b. The runtime for other segment 

configurations is between the best and the worst cases. The 

matrix-best variant outperforms matrix-worst by up to 27% (25%) 

for the forward (backward) segmented scan. 

When a sequence is composed of a few segments that span several 

blocks, we perform faster unsegmented scan for blocks falling 

 

Figure 10. Relative runtime of backward segmented scan. 

 

 

 

 

Figure 8. Effect of optimizations in matrix-scan. 

 

 

Figure 9. Relative runtime of forward segmented scan. 
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within one segment. The best case performance for such a 

sequence is achieved when there is only one segment. For large 

one-segment sequences, we observed that enabling this 

optimization improves performance by up to 24% (18%) for 

forward (backward) segmented scans. Compared to matrix-best, 

the performance is up to 4% (8%) worse, because the propagation 

phase does the most work propagating p across entire b. 

Compared to the tree-based implementation tree, our segmented 

scan demonstrated much better performance. For input sequences 

of 1M+ elements, matrix-worst shows up to 4.35 times better 

performance than tree does for the forward segmented scan, and 

up to 7.85 times better performance for the backward segmented 

scan. Matrix-best’s performance is up to 5.84 times better than 

that of tree for the forward segmented scan, and up to 10.32 times 

better for the backward direction. 

5.3 Radix Sort Application 
Many applications [4][7][10][12] that use scan primitives as 

building blocks for parallelization will benefit from our fast 

matrix-based scan implementations. The overall performance 

improvement will be proportional to the fraction of total time in 

executing scans. To test the impact of faster scans on real 

applications, we integrated our matrix-based scan implementation 

with CUDPP’s global radix sort [9], based on the algorithm in 

[10] and described in detail in [5]. 

Radix sort sorts integer keys by processing individual bits. 

CUDPP implements a parallel radix sort via invocations of three 

GPU kernels for each bit of the key, beginning from the lowest to 

highest. An integer array a of length n is sorted in the ascending 

order. The first phase constructs a temporary array t of length n, in 

which t[i]=0 iff a[i]’s bit is 1, and t[i]=1 iff a[i]’s bit is 0. t is the 

input to the forward unsegmented +-scan that, for each element i, 

computes the number of 0-bit elements to the left of i. Finally, the 

third stage uses the output of scan to scatter the elements to proper 

locations. 

The execution time of the first two stages is independent of input; 

however, the performance of scatter depends on memory access 

patterns. Scatter takes the least time if all elements are the same, 

because scatter writes are coalesced. Similarly, scatter takes the 

most time when none of the writes are coalesced, e.g., for input 

a[i]=i, i=0..n-1. The fraction of scan execution time is 30-35% of 

the total sort time when the scatter takes the most time and ~55% 

when the scatter takes the least time. 

We replaced CUDPP’s scan by our faster scan in CUDPP’s radix 

sort. For larger sequences4, our scan boosts the overall 

performance of the radix sort by 9.5–11.6% for the worst-

performance scatter, and by 12.5–17.7% for the best-performance 

scatter; this is consistent with the expected speedups. 

5.4 Performance of Scan across GPUs 
Scans have low computational intensity – therefore, their 

performance is highly influenced by available memory bandwidth. 

We measured performance of the scan primitives on three 

NVIDIA GPUs: 8800 GTX, 8800 GT, and 8600 GTS, which have 

theoretical peak bandwidth of 86.4 GB/sec, 57.6 GB/sec, and 32 

GB/sec, respectively. Figure 11 shows the effective memory 

bandwidth achieved by our implementation of scan primitives on 

                                                                 

4 The improvement is even higher for small sequences. 

a 1M-element sequence of floating point data; F and B denote the 

forward and backward directions, w and b denote worst- and best-

case segmented scans. We compute the effective bandwidth as 

n*2*sizeof(float)/t, where n is sequence length, 2 is the number of 

read/write operations per element in a sequential scan, and t is 

run-time. As expected, the performance of the scan primitives 

increases with the increase in memory bandwidth, achieving the 

best performance on an 8800 GTX. In comparison to the current 

DRAM bandwidth available to CPUs, the GPUs have an order of 

magnitude higher memory bandwidth. Therefore, the performance 

of GPU-based scans of large sequences outperforms their CPU-

based counterparts significantly. 

6. CONCLUSIONS AND FUTURE WORK 
In this paper, we have proposed a novel matrix-based scan 

algorithm. We have presented a detailed analysis on the mapping 

of our algorithm to GPUs and contrasted it with prior GPU-based 

scan algorithms. We have highlighted its advantages and extended 

it to segmented scan and backward scan algorithms. We have also 

compared our results to the state-of-the-art algorithms. In practice, 

our results have demonstrated a significant performance 

improvement over prior GPU-based algorithms. 

As a part of the future work, we would like to perform 

experiments and study scalability issues on newer generation 

GPUs and other highly-parallel architectures. We would also like 

to explore new hardware extensions that improve the 

programmability on GPUs and apply them to scan primitives. 
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